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Lyme disease is one of the most prevalent and fastest growing vector-borne bacterial illnesses in the
United States, with over 25,000 new confirmed cases every year. Humans contract the bacterium Borrelia
burgdorferi through the bite of the tick Ixodes scapularis. The tick can receive the bacterium from a vari-
ety of small mammal and bird species, but the white-footed mouse Peromyscus leucopus is the primary
reservoir in the northeastern United States, especially near human settlement. The tick’s life cycle and
behavior depend greatly on the season, with different stages of tick biting at different times. Reducing
the infection in the tick-mouse cycle may greatly lower human Lyme incidence in some areas. However,
research on the effects of various mouse-targeted interventions is limited. One particularly promising
method involves administering vaccine pellets to white-footed mice through special bait boxes. In this
study, we develop and analyze a mathematical model consisting of a system of nonlinear difference equa-
tions to understand the complex transmission dynamics and vector demographics in both tick and mice
populations. We evaluate to what extent vaccination of white-footed mice can affect Lyme incidence in
I. scapularis, and under which conditions this method saves money in preventing Lyme disease. We find
that, in areas with high human risk, vaccination can eliminate mouse-tick transmission of B. burgdorferi

while saving money.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Borrelia burgdorferi, a bacterial species of spirochete, is the main
causative agent of Lyme disease, a tick-borne illness. The bacteria is
mainly present in the northeastern United States, as well as in ar-
eas of Asia and Europe (Schwartz et al.,, 2017). In the U.S,, there are
approximately 30,000 confirmed cases reported to the Centers for
Disease Control and Prevention (CDC) every year but actual cases
have been estimated as high as 300,000 cases per year (Centers for
Disease Control and Prevention, 2018). Symptoms can be debilitat-
ing, but may not appear for months after infection (Centers for Dis-
ease Control and Prevention 2018).
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Lyme disease is transmitted through the bite of hard bodied
ticks (Shapiro, 2014). The bacteria cannot be transmitted from par-
ent to offspring in humans by birth or nursing (Mather et al.,
1991). Reservoirs of B. burgdorferi include small mammals, such as
mice, shrews, chipmunks and skunks, as well as some species of
birds. The focus of this research is to assess the effectiveness of a
new control method for Lyme disease in the U.S.

In eastern North America, the primary Lyme disease vector is
the black-legged tick or deer tick, Ixodes scapularis (Shapiro, 2014).
The vector’s two-to-three-year life cycle is segmented into three
stages as illustrated in Fig. 2. Ticks feed only three times in their
lives, each time taking a blood meal from a host to reach the
next developmental life stage (Centers for Disease Control and
Prevention 2018). A tick feeds by attaching to a host and draw-
ing blood over a period of three to five days (Minnesota De-
partment of Health, 2018). B. burgdorferi can then enter the host
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through the tick’s saliva (or the tick through the blood meal) while
the tick feeds for the next 16 to 36 hours (Cook, 2015).

Black-legged ticks are born uninfected as larvae in the spring.
In the summer, they seek a blood meal from any sort of small
mammal, potentially acquiring B. burgdorferi if the host is infected.
After molting to the nymphal stage, they next feed the following
spring. Nymphs feed on any size mammal, from mice to deer to
humans (Minnesota Department of Health, 2018). This is where
human risk is the greatest since nymphs are transparent in color
and only about 2 mm in length, making them difficult to detect on
the body. If the tick had previously become infected in the larval
stage it can then, as a nymph, infect its host. After molting again,
they reach the adult stage that fall and seek a final blood meal.
In the adult stage they prefer large mammals such as white tailed
deer. Having completed their final blood meal in the fall, the adults
mate, lay eggs, and then shortly die (Lane et al.,, 1991).

Although ticks will feed on a variety of hosts, of particular im-
portance to the persistence of B. burgdorferi is the white-footed
mouse Peromyscus leucopus. White-footed mice are the preferred
biting targets of larval ticks and are often targeted by nymphs as
well. These mice are generalists and live in a variety of habitats in
eastern North America, thriving especially in habitats where their
natural predators are absent, such as fragmented forests near sub-
urban human settlements (Way and White, 2013; LoGiudice et al.,
2003). P. leucopus do not experience any significant reduction in
fitness due to either the B. burgdorferi bacteria or from feeding by
larval and nymphal ticks. An individual mouse commonly becomes
infected by a nymphal tick, and goes on to spread the infection to
many more larvae over the rest of its one-year life since a mouse
may have up to 100 ticks in the larval and nymphal stages feed-
ing on it at the same time (Hersh, 2014). These factors combined
have all contributed to the high prevalence of the disease in New
England and the Upper Midwest.

It is important to note the seasonality in the tick activity:
nymphs are mostly active in the spring, larvae in the summer,
adults in the fall, and in the winter all stage activity decreases
(Lane et al., 1991). This is due to I scapularis’ greatly sedentary
behavior: the ticks thus depend on their hosts as means of trans-
portation. Since mice and deer activity tends to be lower dur-
ing winter, so do tick bite rates in humans. Ticks in the United
States do not have a natural predator, and winter is the only nat-
ural control mechanism. The advent of climate change leading to
shorter, warmer winters is yet another factor in the proliferation
of I scapularis and B. burgdorferi throughout a widening range
(Ostfeld and Brunner, 2015).

With the increase in tick-borne diseases, much research has
been undertaken to model transmission dynamics and understand
the impact of control methods (Interlandi, 2018; Jordan et al.,
2007; Moreno-Cid and de la Lastra J. M., 2013; Schulze et al., 2017;
Schwendinger et al., 2013). Vaccines and acaricide, a poisonous
substance for ticks and mites, have been studied as interventions
to control transmission of B. burgdorferi between ticks and mice.
Multiple lab studies have shown vaccines’ efficacy in eliciting im-
mune reactions in white-footed mice against B. burgdorferi’s OspA
surface protein, thereby building resistance to infection (Cornstedt
et al., 2017; Izac et al., 2017; Schwendinger et al., 2013). Addition-
ally, field trials of vaccinating white-footed mice by distributing
food with E. coli presenting B. burgdorferi’'s OspA was effective at
reducing prevalence of B. burgdorferi in both mice and nymphal
ticks (Richer et al., 2014). A current popular method of administra-
tion is the use of bait boxes. Bait boxes are placed along frequented
mice zones where the smell of food entices the mice to enter the
box and pass through a wick covered in fipronil, a commonly used
acaricide, which protects the mice from tick bites for the following
4 to 6 weeks (Schulze et al., 2017). Doping the bait in the boxes
also distributes vaccines to the mice (Schulze et al., 2017). Many

of these studies focused on fragmented forest environments, com-
mon near areas being developed for human use. Forest fragmenta-
tion is a large threat to biodiversity since the area becomes unsuit-
able to animals with larger ranges, but white-footed mice thrive in
this environment, often completely out-competing other species of
small mammal (LoGiudice et al., 2003).

Although other control methods such as introduction of preda-
tors and regulation of host populations have been proposed, most
tick control has proven ineffective (an exception being the fungus
Metarhizium anisopliae), and control of deer populations has not
been shown to have a significant effect in reducing tick-borne dis-
eases (Jordan et al., 2007). In this study we focus on modeling the
introduction of orally induced vaccines into mice populations to
determine the reduction of infected nymphal ticks and hence re-
duction in human cases.

The enzootic transmission cycle of B. burgdorferi has been
widely modeled. Some mathematical models seek to understand
the complex life cycle of I. scapularis and provide insight on fac-
tors affecting its behavior such as climate, host populations, and
seasonal population dynamics (Dobson et al., 2011; Ogden et al.,
2005; Pugliese and Rosa, 2008). Other models of B. burgdorferi
transmission have given insight on its reproductive number with
mice, the importance of targeting I. scapularis larvae, and the abil-
ity of B.burgdorferi to spread geographically (Wang and Zhao, 2017;
Zhang and Zhao, 2013). Our research advances this body of work
by using the population parameters and dynamics found in previ-
ous models, such as Allan et al. (2003); Nupp and Swihart (1996);
Ogden et al. (2007); Randolph (1998), to model not just B. burgdor-
feri’s enzootic transmission, but a leading effort to decrease trans-
mission. This will provide critical insight to public health officials,
researchers, and institutions seeking to assess the effectiveness of
vaccines before they invest in their implementation, and will also
provide additional data to the small body of field trials that have
been done.

In this study, we model interacting tick and mouse popula-
tions subdivided by infection status and (for ticks) life stage. In
the following sections of this report, we develop a system of dif-
ference equations to describe annual populations while account-
ing for their complex life cycle seasonality; then we follow clas-
sical qualitative analysis with a cost analysis to compare vaccina-
tion costs to the economic impact of cases avoided. Our aim is to
model a tick-mouse cycle in a fragmented forest environment in
the northeastern United States, where field data are available and
where human risk is especially high (Schwartz et al., 2017).

2. Methods
2.1. Assumptions and definitions

To model tick-mouse infection dynamics, we consider certain
assumptions. The first is that mice and ticks mix homogeneously
at all stages, and that infection does not affect their behavior or
interactions within a given geographical area. While we do account
for mice having more contacts with larvae than with nymphs,
mouse-tick contact rates are taken to be independent of infec-
tion status in both mouse and tick. We also assume that infec-
tion with B. burgdorferi does not affect mouse birth or death rates,
nor tick hatching, death, or biting rates. We assume this because
evidence suggests that B. burgdorferi does not cause any disease
in ticks or white-footed mice, making them an excellent reservoir
host (Voordouw et al.,, 2015). The reproductive fitness of white-
footed mice is also unaffected by the presence of the parasitic ticks
(Hersh, 2014).

We also assume that infectious mice and ticks remain in-
fectious for the rest of their lives, which is supported by cur-
rent research on B. burgdorferi in I scapularis and P. leucopus
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Fig. 1. Mouse and tick compartmental model. Rates shown are per capita; transi-
tions without rate labels indicate tick life stage progression over time.

(Barbour and Fish, 1993; Ostfeld and Keesing, 2000; Schwan
et al., 1988). We assume that every larva or nymph either dies
or successfully feeds to molt before the cohort’s next questing
season, which is true for the overwhelming majority of ticks
(Centers for Disease Control and Prevention, 2018). We adopt this
simplifying assumption because the tick life cycle (outlined in
Section 2.2) generally allows enough time (outside any winter di-
apause) to find a host and molt before the next questing period
(see Fig. 2). This allows death and molting to be modeled sepa-
rately: any larva or nymph that does not die before the cohort’s
next questing period is assumed to progress to nymph or adult, re-
spectively, with the same infection status. Another assumption in
this model is that ticks are only infected by mice (and vice versa)
since white-footed mice have a very high population density and
are larvae’s primary hosts (LoGiudice et al., 2003). White-footed
mice also transmit and receive B. burgdorferi with greater effective-
ness than other tick hosts, making them primary spreaders of the
pathogen (Barbour et al., 2015). The model incorporates seasonal-
ity by having only one life stage of tick feed at a given time. Here,
tick questing/feeding periods are mostly divided into two separate
seasons although in reality there is some overlap, particularly for
nymphs and larvae, which will not be taken into account in this
work. The final assumption of our model is that infected ticks and
mice do not transmit B. burgdorferi to their offspring (Mather et al.,
1991; Rosa and Pugliese, 2007).

For our model, we build a system of nonlinear difference equa-
tions describing a susceptible, infectious, and vaccinated (Ms, M;,
My) mouse population (P. leucopus) coupled with a susceptible and
infectious (Ns, Nj) tick population (I scapularis). To understand the
mechanisms of these populations, life cycles, and infectiousness,
we construct a compartmental diagram representing the system'’s
dynamics, including seasonality. A flow chart capturing the dynam-
ics of the system is shown in Fig. 1, and state variables and model

Table 1
State variables for mice and ticks, taken
at time t.
Variable  Definition
M(t) Total Mouse Population
Ms(t) Susceptible Mice
M;(t) Infected Mice
My(t) Vaccinated Mice
Ls(t) Susceptible Larvae
N(t) Total Nymph Population
Ni(t) Infected Nymphs
Ns(t) Susceptible Nymphs
Al(t) Infected Adults
As(t) Susceptible Adults
Table 2

Parameters for population dynamics.

Parm.  Definition

Ay Birth/recruitment of mice

Bm Transmission constant from nymphs to mice
v Contact between mice and vaccines

w Proportion of vaccine effectiveness

i Natural death of mice

At Recruitment of larvae

BL Transmission constant from mice to larvae
Bn Transmission constant from mice to nymphs
o Egg to larva natural death

o Larva to nymph natural death

a3 Nymph to adult natural death

parameters are summarized in Tables 1 and 2 (units and values are
given in Table 3).

Mice have a constant birth Ay, per generation and a uniform
death rate w, with an annual probability of survival thus given by
e~#. All mice are born as susceptible, but can then be vaccinated
at a rate Y w, where ¥ is the rate per year at which mice become
vaccinated and w the percent effectiveness of the vaccine. If not
successfully vaccinated, they become infected by a nymphal tick at
rate ,BM%, where By is a contact rate (in 1/yr) and % gives the
infection prevalence of nymphs. The infection rate depends only
on nymphs because we assume that larvae do not hatch infected
with B. burgdorferi so they cannot infect mice when they feed.

Ticks also have a constant recruitment per generation which is
defined as Ar, being the number of larvae hatching every year. We
assume a probability of death as e~%, with each «; corresponding
to a respective stage change’s natural death as in Table 2. A larva
becomes infected at rate ,BL%, where B gives the rate (in 1/yr)
at which a larva has potentially infectious (to the larva) bite con-
tact with mice. Any larva that does not become infected or die at
season’s end progresses to a susceptible nymph. This transition is
based on the assumption that no larvae survive through the next
summer without feeding and progressing to nymphs. Nymphs then
begin feeding, and susceptible nymphs can be infected at a rate
of /SN%, where By denotes the rate (in 1/yr) at which a nymph
bites mice multiplied by the proportion of times the bacteria in-
fect a susceptible nymph if it bites an infected mouse. At this
point infected nymphs that do not die can also feed on a suscep-
tible mouse to infect it as described for mice above. All infectious
nymphs and susceptible nymphs that do not die become infectious
and susceptible adults respectively. This transition is based on the
assumption that no nymphs survive through the next spring with-
out feeding and progressing to adults.

The infection rates described in the preceding paragraphs can
be derived from the common assumption that the vector-host con-
tact rate is proportional to vector density together with the fact
(derived formally in Section 3.1) that the host and vector popu-
lations are constant from year to year (unaffected by infection).
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Fig. 2. Two-year tick life cycle with overlapping generations.

Table 3
Parameter values for mouse and tick population dynamics.
Parameter  Definition Value Units Reference
My Total mouse population 50 mice (Nupp and Swihart, 1996)
Am Birth/recruitment of mice 65.02 mice
v Contact between mice and vaccines varied 1/year
Bm Transmission constant from nymphs to mice  varied 1/year
4 Proportion of vaccine effectiveness 0.96 — (Schwendinger et al., 2013)
" Natural death rate of mice 4.38 1/year  (Ogden et al.,, 2007; Wang and Zhao, 2017)
Ne Total nymph population 1000 ticks (Allan et al., 2003)
At Recruitment of larvae 1.998 x 10° ticks
BL Transmission constant from mice to larvae varied 1/year
Bn Transmission constant from mice to nymphs  varied 1/year
o Egg to larva natural death 11.98 1/year  (Randolph, 1998)
oy Larva to nymph natural death 3.07 1/year  (Randolph, 1998)
o3 Nymph adult natural death 3.22 1/year  (Randolph, 1998)

Assuming (consistent with observation) that vectors (here, tick
nymphs) can bite hosts (mice) as often as desired, the overall rate
of potentially infectious contacts can be given by SN. Further as-
suming that these contacts are unaffected by host or vector infec-
tion status, a fraction Ms/M involve uninfected mice, and a fraction
N;/N involve infected nymphs, so the overall rate of new host infec-
tions is BN % % To simplify units, we rewrite this as (ﬂ%)%Ms
and, since N and M are constant, define 8y = ,8%, leading to the
infection rates given in the foregoing paragraphs, and to parame-
ters with units of 1/time.

2.2. Model development

In order to derive the final model, we first divide a one year
time step into several subintervals, with each subinterval describ-
ing one specific process in the cycle. After each of the events
is mathematically described, they can be chained together to de-
scribe the population dynamics from year to year. First, each im-
portant event in the system is associated with one or more arrows
on the flowchart. The full list of transition equations derived from
these events is provided in Appendix A.1.

For a visual representation of how the 2-year tick life cycle fits
in to a model with 1-year time steps see Fig. 2. Although there
is only one generation and life stage assumed to be questing and
feeding at a time, there are 2 generations that overlap each year.
Our yearly cycle begins with nymphs in the spring which quest,
feed, and begin molting to the adult phase. We then consider the
larvae which hatch from the eggs of the previous year’s adults and
begin questing and feeding in the summer. These larvae will go on
to become the next year’s nymphs. In the summer those nymphs
are dormant while they transition to adulthood and the larvae that
hatched in the end of the spring begin questing and feeding. Those

larvae molt during the fall and winter. In the fall, the adults, who
were nymphs in the spring, lay the eggs for the next spring.
These building blocks are designed to be modular to allow for
a possible different ordering of events. For the purposes of this
model, the cycle is taken to begin and end in the spring, which
is peak nymph activity. Thus the following sequence of events for
the life cycle and transmission dynamics of the populations is con-
sidered:
Spring

1. Mice are vaccinated
Mice are vaccinated at the beginning of our time step because
we want to measure the impact of vaccination as protection
against nymphal ticks; thus vaccination must take place before
nymphal ticks begin questing and feeding in the spring.

2. Susceptible mice become infected
Mice being infected is the first event related to the nymphal
feeding season. Larvae infected in the previous year have now
progressed to nymphs and can infect mice by taking blood
meals.

Summer

3. Nymphs become adults
Nymphs becoming adults means that the nymph successfully
feeds, and from there any of the following may occur:
o Infected nymphs become infected adults (infected nymph
potentially infects host)
o Susceptible nymphs can become infected adults
o Susceptible nymphs can become susceptible adults
4. Mice die
Here we account for mouse deaths that happen in the spring,
after vaccination and after nymphs have fed. We separate this
event from the other event of deaths in mice to account for the
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mice that are infected in the spring but do not survive to infect
larvae in the summer.
5. Mice are born

Here we account for new births in the mice population that
happen in the spring after vaccination and the feeding of
nymphs. We separate this event from the other event of births
in mice so as to maintain a consistent population size after the
deaths calculated in the previous step.

6. Larvae hatch
Eggs hatch throughout the summer and become larvae. These
larvae do not feed until the following spring (see Fig. 2).
7. Larvae die
Here we account for larval deaths that occur during the hatch-
ing season and while questing. Thus the later steps involving
larvae can assume that all remaining larvae successfully feed.
8. Larvae feed on mice
Here all remaining larvae successfully feed and become either
infected or susceptible nymphs based on whether they feed
on an infected mouse and receive the bacteria. In our model,
we count these larvae as nymphs immediately after they feed
whereas in reality they will not finish molting to nymphs until
next spring.
« Susceptible larvae can become susceptible nymphs
 Susceptible larvae can become infected nymphs

Fall through winter

9. Nymphs die
Here we account for all nymphs that died during molting or
while questing. Thus the size of our nymph population is rep-
resentative of the nymphs that successfully feed and progress to
adult, rather than counting nymphs that would have died while
molting.
e Infected nymphs die
 Susceptible nymphs die
10. Mice die
Here we account for death that takes place from the beginning
of summer until the end of winter so that our mouse popula-
tion count is representative of the population at the beginning
of spring.
11. Mice are born
Here we account for birth that takes place from the beginning
of summer until the end of winter so that our expression for
mouse population is representative of the population at the be-
ginning of spring.

In Fig. 2, different generations are designated by the subscripts
0, 1, and 2. Generation O finishes in fall of the first year, Genera-
tion 1 covers the two-year span of the image, and GenerationO/s
descendants, Generation 2, begin their lives in summer of the sec-
ond year. The subscripts are not the same as the t-indexed yearly
time steps in the model. The nymphs and adults for a particular
year are the same generation of ticks, while the larvae are another.
The vertical axis does not depict relative population size, but indi-
cates respective seasons of questing individuals. In our model, the
total population of any stage of tick in each year is the same as the
total population of the same stage in all other years, which allows
us to organize their two-year cycle in one year. This will be shown
later in the analysis section.

To construct our system of equations, we use each rate on the
flowchart to create an expression for population before and after
its associated event, and then proceed by combining those equa-
tions into the full system. As an example, consider u, the rate
at which mice die. In a discrete-time system, such rates appear
within exponents to reflect the proportions of populations making
(or not) the corresponding transition during a given time period.

If we integrate to find the total population before and after one
year’s worth of deaths we get M(t + 1) = e"*M(t). The proportion
of mice that survive is e~*. Likewise, the proportion of mice that
die is 1 — e #. Thus each exponential term containing a rate has
that rate multiplied by 1 year, making the exponent dimension-
less. Our time step of one year is subdivided by seasons in order to
accurately account for tick life/activity stages; thus some of the ex-
ponents are shown to be fractions. For example, e~3#/4 represents
survival after three out of the four seasons. This use of fractional
exponents is used for recruitment, death, vaccination, and contact
constants.

To organize this ordering of events we separate the year into
11 sub-timesteps {t + %Ii =1,2,...,11}. These sub-timesteps do
not necessarily correspond to a certain interval of time, and often
we account for an entire year’s worth of a particular process in
each sub-step. If we wish to account for processes over only part
of the year our proportions will be of the form e~¢/k for arbitrary
parameter ¢ and fraction of the year 1/k. Furthermore, nonlinear
terms will reference other state variables in the exponent, which
introduces more complexity to the final equations. A full derivation
of the system of equations can be found in Appendix A.2.

The final system of Eq. (1), relating populations of mice and
nymphs starting and ending during spring, is presented below.
Adult and larvae stages are not included in these final populations
as larvae have not yet hatched and adults died in the previous fall.
However, the intermediate steps contain solutions for each stage at
various points in the year.

Let M(t) = Ms(t) + M;(t) + My (t) and N(t) = Ns(t) + Ni(t), the
total population of mice and ticks, respectively. Then the system of
equations, system (1), is given by:
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Py N

Mi(t +1) = My(t)e ™ + Mg(t)e e~ % (1— e~ ¥3%0),  (1d)

and

). (le)

The number of susceptible mice at time t + 1 is equal to the
number of susceptible mice that did not die, did not become vac-
cinated, and did not become infected in the previous year plus the
mice that were born—accounting for the fact that mice are born
throughout the year by allowing 1/4 to be born before the larvae
feeding season and 3/4 to be born after. The number of infected
mice at time t + 1 is equal to the number of infected mice that
did not die plus the number of susceptible mice that became in-
fected and did not die. Likewise, the number of vaccinated mice at
time t + 1 is equal to the number of vaccinated mice that did not
die plus the number of susceptible mice that became vaccinated
and did not die.

The number of infected and susceptible nymphs at time t + 1 is
equal to the number of eggs hatched times the survival rate times

My (t+1) = My(t)e ™™ + Ms(t)e “(1 —e
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the probability of becoming infected or not becoming infected, re-
spectively. This rate is based on a contact rate times the proportion
of all mice which were infected in the previous summer.

3. Qualitative analysis
3.1. Equilibrium densities of 1. scapularis and P. leucopus

The total population size of mice can be described by calculat-
ing M(t + 1), the sum of the susceptible, infected, and vaccinated
compartments at time t + 1.

M(t+1) = Ms(t+1) + M (t + 1) + My (t + 1)

Ay -« 3
TMG% + ZAM

This is a linear difference equation whose solution is:

M(t +1) = e”*M(t) +

3u

t—-1
M(O) = MO ) + e 13) e
j=0

_ Ay, - 1- (67”)'?
- M uyt 4 22M
O + 5 (e +3)( ——
Since 4 is a positive constant, e # is a proportion and 0 < e ™ < 1.
Therefore we define

Ay (e % +3)

Mo = MO = 5 T @

This is the mouse population at demographic steady state, and it
can also be written as:

CAwoge 1 3Aw 1
Moo= ™2 1-en

In biological terms, it is the number of mice born during event 5
of any year that did not die plus the number of mice born during
event 11 of any year. Since the mouse-tick system is well estab-
lished prior to the introduction of any control measures, we hence-
forth assume that M(0) = M., so that M(t) = M, for all t > 0.

Similar calculations can be performed on the total nymphal
tick population with N(t + 1) equal to the sum of the susceptible
and infected tick populations at time t. In the construction of this
model, we assumed that there are no demographic pressures on
the population other than the constant birth and death rates, so
N(t) is constant from year to year as well. That is,

(g +30p)

N{t+1)=Ns(t+1)+N(t+1)=Are " =

(o +

309)
thus, N(t) = Noo = Ate” " 2 ~ for all time t.

(3€ +e )e (1—e-H)

given by:

A L Yo _ By N
Mt & +(Moo-Mj()-My ()" 4 e & [1-e 2 Moo

(o +30p) B

N(t+1)=Are 7

I A
1—e e q Moo+ ML

(3a)
Mi(t+1) = My(t)e * + (M — Mi(£) — My (£))e e % (1 e~ %), and
(3b)
My (¢ +1) = My(D)e ™ + (Mao — My(£) = My (£))e (1 — e~ %)
(30)
In the next section we proceed to calculate the fixed points of
system (3) in order to understand its long-term dynamics.

3.2. Disease-free equilibrium

To find fixed points, we start by setting the equations in sys-
tem (3) equal to their respective populations. That is, N;(t +1) =
Ni(t) = NI*’ Mi(t+1) = M(t) = M?, and My (t+1) = My (t) = M;C/I
Setting N = 0 yields the disease-free equilibrium (DFE),

1—enr
= Nooo NF =0, M{ =My—— S M7 =0,
=
g gt
and M = MOOLZ:)
1—en%

As expected, the total population is at demographic steady
state: M¢+ Mj; = M. We can also interpret the mouse popula-
tions at disease-free equilibrium as proportions of the total equi-
librium mouse population. That is,

M;  1—en M; e ht(1-e'F)
Mo et Mo 1_en¥

*

S

The expression is the proportion of mice that die, and are

thus replaced at deoronographic equilibrium, over the proportion that
My
Moo
that survive times the proportion that do get vaccinated over the
proportion that either die or get vaccinated.
The stability of the disease-free equilibrium can be analyzed ei-
ther via the control reproduction number R¢ or by linearizing sys-
tem (3), calculating the Jacobian at the disease-free equilibrium,

and identifying the eigenvalues. Notice that this matrix is singu-
(aq+3ay)

_ 12 2 (1*9"‘)/3“\1' of
(Be I re 3 Ay

the second. The Jacobian matrix of system (3) (N;, M;, My) at the

DFE is given by

either get vaccinated or die. Furthermore, is the proportion

lar; the first row is a constant multiple ¢

(aq +

_ (ag+30p)
eHE i (-eM)BiAr 0

BuBL
8
(l —e M #
3
N

J |DFE =
8AT Yo (7 +3a7)
1-e "7 |eo— 4

0

The total nymph population is equal to the number of hatched
eggs times the proportion of nymphs that do survive before the
sampling time. It follows from this calculation of M., and N
that we can reduce system (1) to a system of three equations. Let
Ms(t) = Moo — (M;(t) + My (t)) and Ng(t) = Ny — N;(t). The system
becomes system (3), which is only in terms of the N;, M;, and My
populations. System (3) will be used throughout the rest of the
paper, including in the numerical simulations (Section 4), and is

(3e*l‘ +e*3l‘/4)

(36’/‘+E’3/‘/4)AM

e M 0

—e M (1 — e‘wTw> e

. . . 4
The eigenvalues of this matrix are A; =0, Ay = e*“*Tw, and
A3 =(1—eH)r+eH, where

Bupre % (e‘“ + 36"‘/4>

= 8(1—en="2)\ 1+3e 4 “@

Since |Aq] < 1, |A3] < 1, the DFE is locally asymptotically stable iff
|[A3| < 1. But A3 > 0, and some algebra shows that A3 < 1iffr < 1.
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Although r < 1 is a condition for stability, r # Rc. But by
Allen and van den Driessche (2008) either r=Rc =1, 1 <1 < Rg,
or 0 <Rc <r <1, meaning stability conditions based on r are
equivalent to stability conditions based on R¢. The canonical value
of Rc can be calculated using the next-generation matrix approach
(see Appendix A.4 for details):

Re = %(r(l —e‘”)-i—\/rz(l —e M) +4re*ﬂ). (5)

This expression, which gives the average number of secondary in-
fections (of either species) produced by a single infective of the
same species introduced into a completely susceptible population,

depends on 33’56:{;)1) =r(1—e*) and a term representing 33’56:{;)1)
times % the equilibrium proportion of mice that have survived

from previous years. By inspection, r < 1 iff R¢ < 1.

We note that Ry, the basic reproduction number, is analogous
to Rc¢ but defined for a context in which no control method, no
vaccination in this case, is introduced into the population. An ex-
pression for Ry can be derived by setting i = 0 in Eq. (5) for Rc.

3.3. Endemic equilibrium

To determine the existence of further fixed points we reduce
the system of equilibrium conditions to one equation. We solve
the steady-state version of Eq. (3¢) for My in terms of My and
Eq. (3b) for M; in terms of Nj. Substituting the resulting expres-
sions into Eq. (3a), we can write a single equation in terms of N;.
For the full derivation, see Appendix A.5. Equilibria are then roots
of this equation on the interval [0,1]:

v
N* N* M., _h Yo 1- ’LMT'C

G(’):ln(l— ’>+ PMete i " __)-o
Ne N 4(e= i My + 4) vo Oy

Since Eq. (6) is transcendental, we cannot find its zeroes an-
alytically. However, by inspection, we notice that G(0) =0, re-
flecting the existence of the disease-free equilibrium. In addition,
there exists a unique endemic equilibrium (a root of G in (0,1)) iff
Rc > 1, which can be seen as follows. By inspection, G(x) — —oo
as x — 17. We calculate

1 Mye 5e %
+ ,BLﬂM 4

(1- e‘”‘#)e—ﬁTM"

e 2
G =— 1! 2 . 2
1-x S(ETMoo + TM) (-l —B’/‘*#e*ﬂTMX>
from which
G'(0) = BiBuMse e ¥ (1 —er'%) 1
- =+ A : 5 —
S(e A{ M°°+TM) (1 76"#*%)
and also
Gx)=0e1-x
8 ’“M A (1 e_u_#e_ﬂTMx>2
er My + S¥ _
( +) o

 BiBuMae e (1 —en-Y et
Since some algebra shows that h’(x) > 0, and thus h(x) is increas-

ing, while 1 — x is decreasing, the two functions can intersect in at
most one point. This occurs iff

8(e# Mu + 42)
,BL,BMMOOF%F#
which is the same condition as G’(0) > 0 and also (since, from (2),

Moce™H/4 _ eHy3e /4 ;

WMe A Ay = 113 i7A ) equivalent to r > 1 and thus R¢ > 1.
Fig. 3 illustrates graphs of G using three different sets of values
for the infection rates B); and B, with other parameter values as

h(0) = (1 —e Yy <1,

0.8 " " . . ‘ .
3,,=11.85 6, =5.73 |
By=7.05 5, =3.41
041 . — ) =1.00 4 =
A 8,=1.00 3, =50

06 e

02t RN 1

0 100 200 300 400 500 600 700

N,

Fig. 3. An endemic equilibrium of the model is a root of the function G.

given in Table 3; R¢ > 1 (and thus an endemic equilibrium exists)
for the first two curves, but not for the lower curve.

Local stability analysis for the endemic equilibrium via the Ja-
cobian matrix shows the endemic equilibrium is locally asymptot-
ically stable when it exists; see Appendix A.5 for details.

4. Numerical results
4.1. Parameter estimation

Estimated values for model parameters are given in Table 3.
Where possible, they were taken from prior studies; in other cases,
key parameters (infection rates B+ and the vaccination rate )
were varied in numerical analysis, as detailed below. Most of these
parameters are given as rates in units of 1/year, often converted
from 1/day as found in literature.

The total mouse population of 50 and total nymph popula-
tion of 1000 were estimated using data on mice and tick popu-
lations in fragmented forest areas, relating woodland size to popu-
lation density. We focused on plot sizes of 1.1 hectares to match
the study that gave us our proportion of vaccine effectiveness
(Schwendinger et al., 2013). Though the data varied, we chose pop-
ulations that had biological significance and would allow us to
simulate our model. Values Ay, and At were calculated from the
population death rates and sizes, using the equilibrium solutions
for the total mouse and tick populations as found in Appendix A.2.

Values for the tick death rates «q, oo, and a3 were derived
from survival proportions between each stage of the tick life cy-
cle; exact calculations are in Appendix A.6.

The three sets of 8 values in units of 1/year, Sy= 0.68, 0.86,
and 147, B;=341, 4.29, and 5.73, and B),,=7.05, 8.87, and 11.85,
were estimated to signify very low, moderate, and high transmis-
sion rates, each respectively corresponding to approximately 20%,
35% and 50% of nymphs infected at equilibrium. Since biting rates
between ticks and mice are dependent on abiotic factors and pro-
portions of other nymph hosts that are not present in our model,
we wanted to use S values that would provide information on a
wide range of biologically feasible scenarios. All calculations for
parameter values are explained further in Appendix A.6.

4.2. Numerical analysis

Simulations were implemented using MATLAB. Baseline results
with parameter values as given in Table 3, intermediate infection
rates as given above, and vaccination rate i = 10/year, showed
populations reaching equilibrium within 6 years, and vaccination
driving a high endemic prevalence in ticks to a low one (see Fig. 4).

Examining endemic prevalence levels as functions of the infec-
tious contact rates (Fig. 5) revealed a low, saturating asymptotic
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Fig. 4. Mouse (upper graphs) and nymph (lower graphs) populations with and without vaccination at Sy=0.86/year, §,=4.29/year, B)=8.87/year.
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Fig. 5. Asymptotic fixed points for infected mice and nymph proportions of popu-
lation as B, varies, ¢ = 0, Ry €[0, 12.68].

value of approximately 1.2% for endemic prevalence in mice as in-
fection rates increase (in the absence of vaccination, ¥ = 0).! This
can be explained by the ordering of events in our model, specif-
ically observing that three-fourths of mouse recruitment takes
place at the end of the year. Since all mice are born suscepti-
ble, these mice are counted as susceptible at our sampling time
in the next spring. Even if 100% of mice were to be infected after
the nymph biting period, those mice must survive fall, winter, and
most of spring to affect the next cycle, which gives biological jus-
tification to the trend in Fig. 5 explained above. Due to the short
life span of the mice, only a very low proportion of them actually
make it to the next spring, so biologically there should always be
a minimum number of susceptible mice in the spring.

Another important finding of this analysis is that endemic
prevalence in mice reaches this asymptotic limit at a point (8 =
4/yr in Fig. 5) where the proportion of infected nymphs is still ap-
proximately 30%. This means that the spring population of mice
is not a good predictor of the proportion of infected nymphs that
year as the percent of nymphs infected could vary from 30% to
100% with very little measurable change in mouse infection preva-
lence. Additionally, the infected mouse population is so small for

1 We vary infectious contact rates by keeping a constant ratio between By, 81,
and By. There is a set ratio between the mouse and the nymphal contact rate be-
cause both depend on the rate at which ticks bite mice. To convert the tick biting
rate to the mouse biting rate, we multiplied by the proportion of nymphs to mice.
We then set Sy to vary from 0 to 1.2/yr and then tested varying ratios between Sy
and B, until we found sets of contact rates that corresponded to percent nymphs
infected at equilibrium that matched biological expectations (Richer et al., 2014).

10°
Infectious Mice
= = =Vaccinated Mice
107! Infectious Nymphs
102 T T e T T

Proportion of
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P 103

0 2 4 6 8 10
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Fig. 6. Equilibrium population proportions at low contact rates as v varies with Sy
= 0.68/year, B, = 3.41/year, S = 7.05/year, Rc¢ < [0.18,3.02].

any infectious contact rates that any field estimation would be very
difficult. In short, while the exact maximum proportion of infected
mice will vary between geographical regions and mice habitats, the
proportion of infected mice measured in the spring is not a good
predictor for Lyme disease risk that year.

To analyze the effect of vaccination on the transmission cycle,
we graph endemic equilibria with respect to varying vaccination
rates, V¥, at the low (Fig. 6), medium (Fig. 7), and high (Fig. 8)
test values for contact rates between mice and ticks discussed in
our parameter estimation. These plots show that the number of
infected ticks can be reduced to less than one (less than 10-3
proportion infected since the nymphal population size is 1000) at
vaccination rates of approximately 2/year, 4/year, and 6/year® for
the low, medium, and high sets of infectious contact rate values
respectively. This shows an approximately linear relationship be-
tween endemic prevalence in ticks without vaccination and the
vaccination rate required to control the epidemic. If equilibrium
infection prevalence increases by 15% then the vaccination rate re-
quired to eliminate the pathogen is an additional 2/year. For ex-
ample, the low set of contact rates which correspond to approxi-
mately 20% of nymphs infected require a vaccination rate of 2/year
to be reduced to less than one infected tick (Fig. 6). The medium
contact rates which correspond to approximately 35% infected re-
quire a vaccination rate of 4/year to be reduced to less than one in-

2 A note on interpretation: A vaccination rate of ¥ = 6/year means it takes one
mouse an average of 1/6 of a year to encounter a bait box.
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Fig. 7. Equilibrium population proportions at medium contact rates as i varies
with By = 0.86/year, B, = 4.29/year, By = 8.87/year, R¢ < [0.28,4.77].
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Fig. 8. Equilibrium population proportions at high contact rates as v varies with
Bn = 147]year, B, = 5.73/year, By = 11.85/year, R¢ € [0.48, 8.51].

fected tick (Fig. 7). A similar change is seen again from the medium
contact rates to the high contact rates, corresponding to 50% of
nymphs infected, as they require a vaccination rate of 6 per year
to be reduced to less than one infected nymph (Fig. 8). This can
be a guide to those seeking to introduce vaccination across a va-
riety of areas who may not have the aid of computational tools to
recalculate vaccination rates for each area.

We note that the values of the vaccination rate i required to
reduce the control reproduction number R¢ to less than 1 are sig-
nificantly greater than the vaccination rates required to reduce the
number of infected ticks to less than 1. For small 8 values, this is
at Y = 4.58/year, for medium S values, it is at ¥ = 6.55/year, and
at large B values, this is at ¥ = 11.04/year. The practical difference
between these two thresholds lies in the scale of the population
being modeled: as the total population size increases, the min-
imum detectable endemic prevalence approaches 0 and the two
thresholds converge. We remind the reader that our choice of scale
here reflects the model’s implicit assumption that the populations
mix homogeneously.

Since equilibria may take many years to reach, we also mapped
the effect of vaccination on the proportion of infected nymphs af-
ter two, five, and ten years in Fig. 9. These results showed that, not
only can vaccinating mice significantly reduce the endemic preva-
lence, it can do so within short time periods. Vaccination was ef-
fective at reducing the number of infected nymphs to zero for all

infectious contact rates within the range of vaccination rates sam-
pled. As the figure indicates, equilibrium proportions of infected
ticks above 20% were reached quickly (within two years) but the
time required to reach lower equilibrium prevalences in ticks de-
pended strongly on vaccination rates. This means that reaching
equilibrium prevalences lower than 20% typically takes more than
two years (but can be accelerated by increasing vaccination): if the
proportion of infected ticks is above 20%, individuals using vac-
cines to reduce the number of infected ticks should expect to see
the same results every year after two years; however, for lower
proportions, they should see a lower number of infected ticks each
year if continuing to vaccinate at the same rate.

4.3. Risk and cost analysis

Through risk and cost analysis we can understand the effective-
ness of mouse vaccination at reducing human cases of Lyme dis-
ease. We have determined that vaccines can significantly reduce
the number of infected nymphal ticks in an area; thus we also
compare the cost of vaccination with reductions of human risk to
determine if the intervention is cost saving. In order to predict the
change in the risk of human Lyme disease cases, we construct the
following function for the yearly number of new human cases, I(t),
also known as the incidence rate:

N;(t)

It)=p -y -Hs- N
where y is the biting rate of tick nymph per human per year, Hs is
the number of humans at risk, p is the probability of infection for
humans after a bite from an infectious nymph, and N(t)/N is the
current infection prevalence in nymphs (dependent on v and 8
values). Although adult ticks also bite humans, we do not include
these contacts in our model because this is minimal in terms of
transmitting infection to humans; due to the large size of these
ticks, most are detected and removed before the necessary time to
transmit the infection (Caraco et al., 2002; Ostfeld et al.,, 1995). We
take the value of p to be 0.031, obtained by taking an average from
a range of values in our source (Magid et al., 1992). We found y to
be valued at 0.005/day, or equivalently 0.913/year,> from another
model but decided to vary this value since it was unclear how this
y had been calculated (Wang and Zhao, 2017).

More precisely, Hs is the number of people who spend their tick
exposure time in that tick-infected region. There are three compo-
nents to H. First is the yearly number of unique people that move
through an area. Second is the average percentage of those peo-
ple’s tick exposure time spent in the vaccination area. Third is the
percentage of that area covered by 1 hectare. For example, 1000
unique people may walk on a suburban trail in a year. Since this a
neighborhood trail, most of those people likely walk dogs or spend
time with their children regularly there, so the average person may
spend 80% of their total time exposed to ticks on that trail. Finally,
that trail may be a kilometer long, so if mice are vaccinated for
50 m on either side of the trail, the total vaccination area would be
5 hectares; thus a single hectare of vaccination would only cover
20% of the total trail risk. This gives us our first estimated Hg value
of 1000 % 0.8 0.2 = 160. The other two estimated values follow
similarly. One accounts for a similar trail, but less populated, and
the other represents a public park. Table 4 compares these three
scenarios.

To analyze the cost of Lyme disease treatment, we examine the
relationship between total cost of implementing mouse vaccination
and average cost for Lyme disease treatment per infected person.
We assume a linear relationship between the vaccination rate

3 0.005 %365 = 1.825/year. Nymphs are active for only half the year, and
1.825/2 ~ 0.913.
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Fig. 9. Vaccine effect on nymphs compared to years of use for low, medium, and high contact rates, R¢ € [0.18,3.02], R¢ € [0.28,4.77], and R¢ € [0.48, 8.51] (B values in

1/yr). In each case the corresponding endemic equilibrium without vaccination was used for initial conditions.

Table 4

Scenarios for estimation of Hs values.

Hs value 80 160 750
Geographical area Trail  Trail Park
Number of people 500 1000 5000
Proportion of time spent 80% 80% 30%

Proportion of area covered

20%

20%

50%

and the increase in cost per increase in vaccination rate, x. Since
white-footed mice are territorial, it is possible that a particular
nest of mice are the only ones feeding from a particular bait box
(Aguilar, 2018). Thus, the same number of mice would access each
box regardless of the number of boxes until all mice are vacci-
nated, making this assumption biologically feasible. This achieves
the following cost function,

Ctotal:X'llf"'I'@s

where 6 is the average cost of Lyme disease treatment per in-
fection, calculated to be $3537.70 per person within the first 12
months following diagnosis with Lyme disease based on studies of
health care costs of Lyme disease (Adrion et al., 2015), as shown
in Appendix A.6. Using data from a field study of vaccines tar-
geting white-footed mice, we estimated x to be $329.29 per unit
increase in ¥ (Interlandi, 2018; Richer et al., 2014), as shown in
Appendix A.6. Since we are assessing cost over a 10 year period we
calculate cost taking into account inflation and use the September
2018-September 2019 consumer price index (CPI) change of 1.7%
as the approximate inflation rate (U. S. Bureau of Labor Statistics,
2019). Since we calculate cost discretely in our model, we assume
costs are accumulated at the end of each year assessed. This means
that since we assessing cost in current year dollars, the cost ac-
cumulated in the first year for example would be the base cost
C:_, times R19-1 = R® where R = 1.017 is our inflation rate, to get
CGo1 =Cq* RO = 1.164C;_;. Thus the total cost will be given as

Ct:,-:(x.¢+9-p-y-Hs%>*R]0‘i. (7)

For a summary of parameter definitions and values for the cost
function see Table 5.

Low Traffic Trail
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Fig. 10. Dollars saved after 10 years of vaccination on a low traffic trail for varying
nymphal biting rates, Hs = 80, medium contact rates. Negative dollars saved means

more money was spent than saved. Only at the highest tick feeding rate was vacci-
nation cost saving.

Since Nj is a decreasing function of i, we have an optimization
problem to adjust vaccination rate to maximize cost savings (rela-
tive to no vaccination) for a human population infected with Lyme
disease and mouse vaccination intervention after ten years across
varying values of y. Figs. 10-12 represent susceptible populations
of 80, 160, and 750 humans, respectively. In all of these plots we
observe a similar trend in that the higher the biting rate y, the
more money saved. However, only for a human population size
of 1000 does vaccination become cost saving for every y value. In
each case there is a cost-optimal value for 1. The greater the hu-
man population, the greater this optimal vaccination rate. The cost
savings also scale up for larger human populations. In the parks,
with the highest number of susceptible humans, vaccination saved
up to approximately $170,000 in the first ten years, whereas sig-
nificantly less money is saved from vaccinating on trails. We note
that even if minimal money is saved from vaccinations, the inter-
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Table 5
Parameters, with values, for risk and cost equations.
Parm.  Definition Unit Value Source
X Increase in cost per increase in vaccination rate dollars $329.29 (Richer et al., 2014)
v Contact between mice and vaccines 1/year varied -
0 Average cost of Lyme disease treatment dollars/infection $3537.70  (Adrion et al,, 2015)
P Probability of infection for humans after nymph bite  infections/bites 0.031 (Magid et al., 1992)
Y Biting rate of tick nymph per human per year bites/(human - yr)  varied -
Hs Susceptible humans people varied -
R Inflation Rate - 1.017 (U. S. Bureau of Labor Statistics, 2019)
20000 High Traffic Trail infected ticks there. This model captures both the seasonal dynam-
ics of the mouse-tick interactions and the effects of vaccination on
10000 the persistence of the infection. These characteristics are impor-
tant because an accurate estimate of infection prevalence within
. the nymphal stage relates directly to the expected number of hu-
10000 man cases in an area and the cost saving potential of vaccines.
Dollars Analysis showed that vaccination can eliminate local B. burgdor-
Saved 5000 feri transmission between mice and ticks at achievable rates and
duration of vaccination. Additionally, we found that the vaccina-
-30000 tion rates required to reduce infection prevalence in ticks to 20%
. achieved the reduction within two years, whereas the time re-
quired to reach lower prevalences was sensitive to vaccination
-50000 rates. Thus infected tick prevalence can be reduced to 20% within
the first two years, but reduction to trace levels would likely take
000, 3 7 p 5 longer.
& (Year™) Furthermore, the cost analysis shows that vaccine intervention

Fig. 11. Dollars saved after 10 years of vaccination on a high traffic trail for varying
nymphal biting rates, Hs = 160, medium contact rates. Negative dollars saved means
more money was spent than saved. Vaccination was cost saving at moderate to high
tick feeding rates.
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Fig. 12. Dollars saved after 10 years of vaccination in a suburban park for vary-
ing nymphal biting rates, Hs = 750, medium contact rates. Negative dollars saved
means more money was spent than saved. Vaccination was extremely cost saving.

vention will still reduce cases of Lyme disease, improving public
health in the local community.

This analysis reflects that vaccines can be a cost saving method
when compared to treatment for Lyme disease but likely only in
areas where mice come into frequent contact with bait boxes, es-
pecially in areas with a high level of human traffic.

5. Discussion
This study used a coupled mouse (Ms, M;, My) and nymphal

tick (Ng, N;) model to determine whether vaccinating mouse pop-
ulations in fragmented forests could reduce the number of Lyme-

is cost saving in specific targeted areas where mice are primary
reservoirs if there is significant human presence in the area, espe-
cially if ticks bite humans frequently there. We believe this could
be a particularly practical measure in fragmented forests near hu-
man settlements like parks or wooded areas in and around subur-
ban developments. These environments often have very high infec-
tion prevalence among nymphal ticks, low mammal diversity, and
high levels of human activity.

In future research, this model could be adapted to include in-
fluence of other control factors. Some promising methods include
chemical or fungal pesticides to cull tick populations, or increas-
ing mammalian biodiversity to allow for predation or for competi-
tion with less competent reservoirs of small mammal hosts. Mod-
eling the pesticide methods could include adding classes of mice
that are protected by pesticide applied directly to their fur through
bait boxes similar to the ones that deliver the vaccine. Increased
biodiversity might include predator-prey or competition dynamics
with different species of host having different transmission rates. A
more detailed cost analysis would also be possible. Incorporating
the effects of tick diapause could improve model accuracy. Lyme
disease is a significant public health problem, and a variety of
mathematical models could offer solutions without the need for
expensive field tests.
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Appendix A
Al. Single-event transition equations

The following table describes the effect of each possible model
event on the relevant populations. Here c is the proportion of the
year for which the particular process takes place. This is not con-
stant for a given compartment transition and depends on the or-
der of events and transitions being divided into multiple events.
Also, M(t) = M;(t) + My (t) + Mg(t) is the total mouse population
at time t, while N(t) = Ng(t) + N;(t) counts all tick nymphs at time
t.

Mouse events

Event Flow Term in equation

Mice are born — M; Ms(t + 51y = cAy +Ms(t + ©)
Mice are Ms —> My  Ms(t+ 51) = Ms(t + Deve
vaccinated
My(t+ 5 =My (t+ £) + Ms(t+ (1 - e-Ve)

Mice die Ms — Ms(t + HL1) = Ms(t + £ )e~w
M, — Myt + 1) = My(t + )e-
My — My (t+ 51) = My (t + §)e=*
_ N+ )
Mice are Ms —>M;  Ms(t+ 51) =Ms(t+ {)e P e
infected
) ) ) _cp N,(H»:‘()
M (t+5D)=M; (¢ + §) +Ms(t+i)<1 —e TMheh
Tick events
Event Flow Term in equation
Ticks die Ls — L(t+ %) = Ls(t + e
N — Ns(t+ 51) = Ns(t + e
N — N,(t+’_*71):N,(t+i)e*m
As — As(t+ 1) = Ag(t + L)e@
A — At + B = At + Dee

M+ )

Larvae feed  Ls— N, Nj(t+ 21 = Ls(t + %)e:C LN

: . *Cﬁlw
Ls — Ns Ng([+ﬂ):L5(t+ﬁ) 1-e M)

Nymphs feed Ny — A, Aj(t+ %) = Ns(t+ &)

CﬁNM,(HirI

Ns— A A+ 5 =Ns(t+ e — Meb
ﬁMl(HF)
N i
Ns — Ag A(t+' ) =Ns(t+ ¢ iy(1- M+ )

Larvae hatch — Lg Ls(t+ 5 =Lt + 1) + cAr

A2. Model derivation

Again let M(t) = Ms(t) + M;(t) + My(t) and N(t) = Ns(t) +
Ny (t).

1. Mice are vaccinated

1 v
Ms(f+ 1_1) Ms(t)e

Yo
7

My (c+ 111) = My(t) + Ms()(1 — e~%)

. Nymphs infect mice

2 1\ _fuMo
M5<t+ “) Ms<t+ 11) 330
By M©

2 1 _Bu MO
M<t+n) M,(t+1l)+M5(t+—)<1—e 2 Nm)

= My(0) + Ms(©e ¥ (1- e )

. Susceptible and infected nymphs feed on mice and become in-

fected adults

3 2 2 /‘NM‘(”H)
A’(”n) Nl(t+1l)+NS(f+n)<1—e M(tm))
= Ni() + Ns(D)
gy MiI©) +Ms(De (1 - e‘ﬁi“%%))

1-—exp -5 1G]

Susceptible nymphs become susceptible adults

3 2 7ﬂTN M,((t+;%))
As(t+ 11) Ns(t+n) e >
py M) + Ms(t)e— ¢ (1 _ e*‘%”%)
2 M(t)

=Ns(t) exp | —

. Mice die

4 3\ u
Ms(t-&-ﬁ) Ms(t—l—]]) 1

Yo Py NO
= Ms(t)e"1e s e 2 VO

4 3\ &
M(t+1]> M[<t+_l.l> 4

» Bu N(©)
=M (t)e 7 —|rM5(t)e’%e’wT (1 - e’TMW)

4 3\
My(e+ 57) = My (e 57 )e s

= My(t)e § +Ms(t)e 4 (1 - e*“’T”’)

. Mice are born

5 4 Ay
Ms(e+ ) = Ms(e+ ) + 22
By Ni© Ay

4
= Ms(t)e*%e$e*7 NO 4 7

. Larvae hatch

6 5
Lg(t+ﬁ) =Ls<t+ﬁ>+AT=AT

. Larvae die

7 6 «
Ls(t+ 11) Ls(t-l— 11> 771 267711\'[

. Larvae feed, possibly get infected, and transition to nymphs

5 )
M(t+

NS(HH)_LS(”]]) ¢ !

B M(t)e % +M5(t)e‘ie‘*(1 —e’ﬁTM%)

4 e~ T M(t) + ATM

o

4
= Are” % exp
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8 7 f’%LM’((”fT))
_ 7 _ M(t+ L
N,(t+ﬁ>_Lg(t+H) 1—e i

. L v By MO
M(t)e 4 +Ms(t)e e % (1 _ e#%)
x | 1T—exp —ﬁ = <
4 e"TM(t) + 4p

9. Nymphs die

9 8\ 3
N5<t+11) Ns(t+n) .

_ AT (o(1+3a2) exp
By N©
g, Mi(De + Ms(o)e- e (1—e } Nm)
% | ==
4 e‘?M(t)-i-T

)

9 8 3ay
N(t+n) N,(t+“) 7
(ag+3ay)

=Aree "7 x | 1—exp

© B (t
B M;(t)e % + Ms(t)e ie (1 - e‘TM%)

4 e~ M(t) + A
10. Mice die

10 9\ _m

Ms(t—l—ﬁ) Ms(t-l— 11) 4
= Ms(t)e"‘e‘%e‘ﬁTM% + %e‘%“

1 ) B t
Ml(t + #) = M(t)e -|—M5(t)e*“e*wT (l - e—#'ﬁ,’%;)

10 _ _ _vo
Mv(t+ 11) — My(t)e " + Ms(t)e #<1 _e Y )

11. Mice are born

ro By N© A A
Ms(t +1) = Ms(t)e e e~ ¥ 30 Dot 4 BTM

@ By Nj(t) A "
- MS(t)e e e éw N’m AM ( 3l )
12. Iinal equations

(@ +327)

N(t+1)=Are @

) . Yo B Myt
B Mi(t)e i + Ms(t)e ie % (1 - e’TM#r:)
4 e~ i M(t) + 4

1-—exp
Ns(t+1) = Ape~ 72
By N (©
B M (t)e % +M5(t)e*?e** (1 —e’TW)

L
ex ——
P 4 e~ i M(t) + 4

Bu N(©O

Ms(t +1) = Ms(t)e e~ e 3 7o 4 A4 (e % +3)
Mt +1) =M (t)e ™ + Ms(t)e‘“e‘# (1 - e‘ﬁTM%)

My (t +1) = My (t)e ™™ + Ms(t)e * (1 — e ')

A3. Demographic and disease-free equilibrium values

1. Total mouse population constant year-to-year

M(t) = Ms(t +1) + My(t + 1) + My (t + 1)

o _BuNO Ay "
= My(t)ere e NG 4 T( = +3)
Yo _Pu _ NO
FM(te " + Ms(t)e e % (1 _e? Ns<~+~sm)

+ My (t)e " + Mg(t)e " (1 - e#)

M) =e “(M(t) + 4me'5 + ieMAM)
73,1
Equilibrium solution : M(t) = %i . +3

. Total nymph population constant year-to-year

N(t) = Ns(t + 1) + Ny(t + 1)

T ) _ By NO
Mpt)e” 4 +Mg(e” Fe” & [1-e 2 NO
_b
(@) +32y) 4 I
— Aw‘w e ¢ MO+ Mg (0+My ©1+ 1

n n_yo _Bu MO
Myte” & +Mgt)e de” 4 [1-e 2 NO
_b
(o +3ay) 4 _ A
+Are 143%2) 1_e e 4 [My(O+Mg(O+My (O)}+ =M

(g +3a2 )

— Are”

. Disease-free equilibrium with vaccination

Ni(t) =0
Ns(t) = Are”
M;(t) =0

—3u
Ay (e 1 +3)

Ms(t) = —
4 (1 e” “*M>
ﬁ vo
A (ef +3eﬂ)<l —e% )
My(t) = =2 Y
(-1 +elt)<71 +el‘+T>

(@ +3u2 )

without vaccination

Ni(t) =0
Ns(t) = Age™ o
M(t) =0
43
Awm (e t )
Ms(®) = 2 T ey,
My (t) =0

A4. Derivation of R¢

We begin by decomposing the Jacobian matrix evaluated at the

F+T O
=[]

DFE as follows:

where F +T is the 2 x 2 submatrix relating the N; and M; com-
partments, O is the 2 x 1 zero matrix, A is a 1 x 2 matrix, and
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. . ¥ . .
Cis the 1 x 1 matrix |e"“~'%" |. F consists of all terms relating

to new infections and T consists of all other terms in each matrix
entry:

(a7 +35)

BubL (357% +€’“)€7# (1—e™) P (A—e™BiAr

ol ® 0 amer ) (3”3;;”/‘*) (3er+e3nt) Ay
Buly (Ge fteme 4% 0
8AT (FeiW#)[(alt‘hz)
,/0 0
and T =e “(O ]).
As with the full Jacobian, the matrix F + T is singular as well.
ka kb 0 O .
Let F = (a O) and T = (0 b)' We can use these matrices to
calculate the next-generation matrix Q and an expression for R.
ka |
Q=F(a—T)"' = p ](_)b with eigenvalues

o o)

so that
Re = ;(ka + ./ (ka)? + 4(ka)b);

1-b

since, from (4), ka = r(1 — e #), this simplifies to

Re =5 (11— e )+ R )2 - arer).

2}

Since e‘“‘wT, the spectral radius of C, is always between 0 and 1,
R¢ provides a stability condition for the disease-free equilibrium.
If R¢ < 1, the equilibrium is stable. Otherwise, it is unstable.

A5. Derivation of equilibrium condition
The equilibrium versions of system (3) are as follows:
® Ny
M; = Mje " + (My — M — M})e Ve (1 e ﬁ)

Yo

My = Mje ™™ + (Mo — My — Mj)e (1 —e %)
Nf = Nu

0 i ® N
g Mie i + (M — Mj — Mp)e e (1 —e*"T“N*L>
1 L
i by

e M + 4t

Solving the second equation for M;; in terms of M;.
M = Mie ™™ + (Moo — Mi, — M¥)e " (1 — e~ %)
(_1 + e%)(zwm - M;)

(—1 + el‘*#)

Solving the first equation for M; in terms of Nj.

My, (My) =

M; = Mie " + (Mo — My - Mpe e ¥ (1- e )

1 e*ﬂTM gi
* * - >
MI (N’ )= Yo Bu
ettt T _e” 2 Fx

Solving the third equation in terms of Nj.
N =N,

p, Mie ™t + (Mo = Mj —M)e e % <1 ,efTN:)
1—exp 7%

e i My + 2

N N: Fot _e i
c(4>=1n(1— ')+ ﬁLN,{"“eAeAA ! c = _]-o
N Noo ] At Moo ) \1 — et e 2 u

Local stability analysis for the endemic equilibrium using the Ja-
cobian matrix finds that one eigenvalue is zero (as for the disease-
free equilibrium), with the other two given by an equation of
the form A% +a;A+a; =0. Thus by the Jury criterion, the en-
demic equilibrium is locally asymptotically stable if and only if
lai| < ap +1 < 2. In terms of the model parameters, this becomes

w'(1-yH(1-y*2)

_ 4 n
r(1—n) T yizwn +y*(1 +zw")
yiaw' 1 -yH (1 -y'2) ¢
<r(1-n) T yizwn +y°zw" +1 < 2,

where n = Ni/N obeys G(n) =0 as in (6), w=e Pu/2, y = e /4
z=e"¥®/4 and ris as given in Eq. (4). Solving (6) for r and sub-
stituting, the two inequalities simplify to
1 —y8zw"
- __r
yiz(1-y*)’
n

where f(n) = —ﬂz—M(l —n)In(1 —n) 12‘/7‘”"

1 —y*zw"

f <

. f)

One can show that 0 < fin) < 1for0 <n <10 < w < 1, with
f monotone decreasing in n, f(0) =1, f(1) =0 for all w € (0, 1).
Meanwhile, the fractions on the right-hand sides of both inequal-
ities are greater than 1 (since w, y, z < 1). Thus the Jury criterion
is satisfied whenever the endemic equilibrium exists.

A6. Parameter estimation

e Calculation of «q, &y, r3: Using data from literature, we used
survival proportions of 0.05, 0.1, and 0.2 between each stage of
the tick life cycle (Randolph, 1998) and calculated the « values
based on the proportions of death that we considered in our
model.
oq: Egg to larva

e~ % =0.05
—% = In(0.05)
a1 = —4In(0.05)
= 11.98/yr

o5: Larva to nymph

e =.1
4
Oy = —§1n(01)
= 3.07/yr
o3: Nymph to adult
e 7 =02
o3 = 2In(0.2)
=3.22/yr

Calculation of w: From literature, we found that the natural
death rate of mice was 0.012/day. Thus, we multiplied by 365
to obtain the yearly value of 4.38/year.

Calculation of Ap: Using M(t) from our equilibrium solution in
Appendix A.3 and the chosen value for the total mice popula-
tion M(t)= 50, along with © = 4.38/yr, we have

-3(4.38)

Aye— 7 +3
PR =Ty

50 =

and thus Ay = 65.02.
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e Calculation of Ar: Using N(t) from our equilibrium solution in
Appendix A.3 and the chosen value for the total nymph popu-
lation N(t) = 1000, along with oy = 11.98/yr and oy = 3.07/yr,
we have

1000 _ AT€7 a1 9823 3.07)
and thus A7 = 1.998 x 10°.

o Estimation of w: We obtained this value from a study that eval-
uated vaccines in mice, specifically ones that included the same
surface protein that we looked into for this study and cor-
responded with the field trial that we referenced throughout
(Richer et al., 2014; Schwendinger et al., 2013). Though the pa-
per had multiple values for effectiveness, we used the w that
corresponded to 100 ng vaccine; this value was presented as a
proportion and thus no conversion of units was needed.

 Calculation of x: The cost of increasing the vaccination rate by
1/day, is estimated by analysis of field data from a vaccine field
trial (Richer et al., 2014). The following data points were used.
1. White-Footed mouse captures

We took data from Table 1: Number of White-Foot Mouse
(WFM) Captures in the Field, recreated below.

Study Year Unique Nights of Total WFM WFM
WFM Trap Use Captures Trapability
Captured

2007 700 9472 6043 8.63

2008 240 13,824 1647 6.86

2009 716 26,112 5399 7.75

2010 877 27,136 3806 4.83

2011 1258 24,064 6078 4.83

Overall 3791 100,608 22,973 6.48

2. Plots per year
The field trial also used 64 traps per 1.1 hectare plot for
distributing vaccines or as controls and used the following
number of plots every year.

Year 2007 2008 2009 2010 2011

Plots Used 4 5 7 7 7

Using this data we construct the following equation for bait-
box contact rate in a year. Due to the high average captures
per mouse we assume that the unique number of mice cap-
tured provides a good estimate to the number of mice in all
the plots.

Number of Plots Used
Unique WFM Captured

We average B(t) across the five study years to obtain Bpjeqn =
1366 per day. The study achieved successful vaccination
in a mouse after approximately 5 captures so we esti-
mate the study’s vaccination rate, ¥ = BM% = 0.02732/day =
9.9718/year. We assume the cost of a bait box distributing vac-
cine to be equal to a bait box distributing acaricide which are
on average priced at $50 per box per year (Interlandi, 2018).
The cost to vaccinate 1.1 hectares at a rate = 9.9718/yr is cal-
culated by $50:64 _ $3200 \ye then solve for x:

Total WFM Captures
Nights of Trap Use

B(t) =

“year — year
Cvaccination = X * llf
3200 = x-9.718
x = $329.29.

Calculation of 8: Using values from a study on health care costs
of Lyme disease, including Post-Treatment Lyme Disease Syn-
drome (PTLDS), we used the following equation (Adrion et al.,
2015):

_ health care costs
~ for an acute case of Lyme disease

probability of average yearly
developing PTLDS * cost of PTLDS

= $2968 + 0.15($3798)
= $3537.70

The probability of 0.15 was taken from the same source as an
average of the range of probabilities of developing PTLDS (10%-
20%).

e Calculation of p: The source cites the probability of Lyme dis-
ease after a tick bite to be from 0.012 to 0.05 (Magid et al.,
1992). The center of this range gives 0.031 for our p value.
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