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a b s t r a c t 

Lyme disease is one of the most prevalent and fastest growing vector-borne bacterial illnesses in the 

United States, with over 25,0 0 0 new confirmed cases every year. Humans contract the bacterium Borrelia 

burgdorferi through the bite of the tick Ixodes scapularis . The tick can receive the bacterium from a vari- 

ety of small mammal and bird species, but the white-footed mouse Peromyscus leucopus is the primary 

reservoir in the northeastern United States, especially near human settlement. The tick’s life cycle and 

behavior depend greatly on the season, with different stages of tick biting at different times. Reducing 

the infection in the tick-mouse cycle may greatly lower human Lyme incidence in some areas. However, 

research on the effects of various mouse-targeted interventions is limited. One particularly promising 

method involves administering vaccine pellets to white-footed mice through special bait boxes. In this 

study, we develop and analyze a mathematical model consisting of a system of nonlinear difference equa- 

tions to understand the complex transmission dynamics and vector demographics in both tick and mice 

populations. We evaluate to what extent vaccination of white-footed mice can affect Lyme incidence in 

I. scapularis , and under which conditions this method saves money in preventing Lyme disease. We find 

that, in areas with high human risk, vaccination can eliminate mouse-tick transmission of B. burgdorferi 

while saving money. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Borrelia burgdorferi , a bacterial species of spirochete, is the main

ausative agent of Lyme disease, a tick-borne illness. The bacteria is

ainly present in the northeastern United States, as well as in ar-

as of Asia and Europe ( Schwartz et al., 2017 ). In the U.S., there are

pproximately 30,0 0 0 confirmed cases reported to the Centers for

isease Control and Prevention (CDC) every year but actual cases

ave been estimated as high as 30 0,0 0 0 cases per year ( Centers for

isease Control and Prevention, 2018 ). Symptoms can be debilitat-

ng, but may not appear for months after infection ( Centers for Dis-

ase Control and Prevention 2018 ). 
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Lyme disease is transmitted through the bite of hard bodied

icks ( Shapiro, 2014 ). The bacteria cannot be transmitted from par-

nt to offspring in humans by birth or nursing ( Mather et al.,

991 ). Reservoirs of B. burgdorferi include small mammals, such as

ice, shrews, chipmunks and skunks, as well as some species of

irds. The focus of this research is to assess the effectiveness of a

ew control method for Lyme disease in the U.S. 

In eastern North America, the primary Lyme disease vector is

he black-legged tick or deer tick, Ixodes scapularis ( Shapiro, 2014 ).

he vector’s two-to-three-year life cycle is segmented into three

tages as illustrated in Fig. 2 . Ticks feed only three times in their

ives, each time taking a blood meal from a host to reach the

ext developmental life stage ( Centers for Disease Control and

revention 2018 ). A tick feeds by attaching to a host and draw-

ng blood over a period of three to five days ( Minnesota De-

artment of Health, 2018 ). B. burgdorferi can then enter the host

https://doi.org/10.1016/j.jtbi.2020.110245
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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through the tick’s saliva (or the tick through the blood meal) while

the tick feeds for the next 16 to 36 hours ( Cook, 2015 ). 

Black-legged ticks are born uninfected as larvae in the spring.

In the summer, they seek a blood meal from any sort of small

mammal, potentially acquiring B. burgdorferi if the host is infected.

After molting to the nymphal stage, they next feed the following

spring. Nymphs feed on any size mammal, from mice to deer to

humans ( Minnesota Department of Health, 2018 ). This is where

human risk is the greatest since nymphs are transparent in color

and only about 2 mm in length, making them difficult to detect on

the body. If the tick had previously become infected in the larval

stage it can then, as a nymph, infect its host. After molting again,

they reach the adult stage that fall and seek a final blood meal.

In the adult stage they prefer large mammals such as white tailed

deer. Having completed their final blood meal in the fall, the adults

mate, lay eggs, and then shortly die ( Lane et al., 1991 ). 

Although ticks will feed on a variety of hosts, of particular im-

portance to the persistence of B. burgdorferi is the white-footed

mouse Peromyscus leucopus . White-footed mice are the preferred

biting targets of larval ticks and are often targeted by nymphs as

well. These mice are generalists and live in a variety of habitats in

eastern North America, thriving especially in habitats where their

natural predators are absent, such as fragmented forests near sub-

urban human settlements ( Way and White, 2013; LoGiudice et al.,

2003 ). P. leucopus do not experience any significant reduction in

fitness due to either the B. burgdorferi bacteria or from feeding by

larval and nymphal ticks. An individual mouse commonly becomes

infected by a nymphal tick, and goes on to spread the infection to

many more larvae over the rest of its one-year life since a mouse

may have up to 100 ticks in the larval and nymphal stages feed-

ing on it at the same time ( Hersh, 2014 ). These factors combined

have all contributed to the high prevalence of the disease in New

England and the Upper Midwest. 

It is important to note the seasonality in the tick activity:

nymphs are mostly active in the spring, larvae in the summer,

adults in the fall, and in the winter all stage activity decreases

( Lane et al., 1991 ). This is due to I. scapularis ’ greatly sedentary

behavior: the ticks thus depend on their hosts as means of trans-

portation. Since mice and deer activity tends to be lower dur-

ing winter, so do tick bite rates in humans. Ticks in the United

States do not have a natural predator, and winter is the only nat-

ural control mechanism. The advent of climate change leading to

shorter, warmer winters is yet another factor in the proliferation

of I. scapularis and B. burgdorferi throughout a widening range

( Ostfeld and Brunner, 2015 ). 

With the increase in tick-borne diseases, much research has

been undertaken to model transmission dynamics and understand

the impact of control methods ( Interlandi, 2018; Jordan et al.,

2007; Moreno-Cid and de la Lastra J. M., 2013; Schulze et al., 2017;

Schwendinger et al., 2013 ). Vaccines and acaricide, a poisonous

substance for ticks and mites, have been studied as interventions

to control transmission of B. burgdorferi between ticks and mice.

Multiple lab studies have shown vaccines’ efficacy in eliciting im-

mune reactions in white-footed mice against B. burgdorferi ’s OspA

surface protein, thereby building resistance to infection ( Cornstedt

et al., 2017; Izac et al., 2017; Schwendinger et al., 2013 ). Addition-

ally, field trials of vaccinating white-footed mice by distributing

food with E. coli presenting B. burgdorferi ’s OspA was effective at

reducing prevalence of B. burgdorferi in both mice and nymphal

ticks ( Richer et al., 2014 ). A current popular method of administra-

tion is the use of bait boxes. Bait boxes are placed along frequented

mice zones where the smell of food entices the mice to enter the

box and pass through a wick covered in fipronil, a commonly used

acaricide, which protects the mice from tick bites for the following

4 to 6 weeks ( Schulze et al., 2017 ). Doping the bait in the boxes

also distributes vaccines to the mice ( Schulze et al., 2017 ). Many
f these studies focused on fragmented forest environments, com-

on near areas being developed for human use. Forest fragmenta-

ion is a large threat to biodiversity since the area becomes unsuit-

ble to animals with larger ranges, but white-footed mice thrive in

his environment, often completely out-competing other species of

mall mammal ( LoGiudice et al., 2003 ). 

Although other control methods such as introduction of preda-

ors and regulation of host populations have been proposed, most

ick control has proven ineffective (an exception being the fungus

etarhizium anisopliae ), and control of deer populations has not

een shown to have a significant effect in reducing tick-borne dis-

ases ( Jordan et al., 2007 ). In this study we focus on modeling the

ntroduction of orally induced vaccines into mice populations to

etermine the reduction of infected nymphal ticks and hence re-

uction in human cases. 

The enzootic transmission cycle of B. burgdorferi has been

idely modeled. Some mathematical models seek to understand

he complex life cycle of I. scapularis and provide insight on fac-

ors affecting its behavior such as climate, host populations, and

easonal population dynamics ( Dobson et al., 2011; Ogden et al.,

0 05; Pugliese and Rosa, 20 08 ). Other models of B. burgdorferi

ransmission have given insight on its reproductive number with

ice, the importance of targeting I. scapularis larvae, and the abil-

ty of B.burgdorferi to spread geographically ( Wang and Zhao, 2017;

hang and Zhao, 2013 ). Our research advances this body of work

y using the population parameters and dynamics found in previ-

us models, such as Allan et al. (2003) ; Nupp and Swihart (1996) ;

gden et al. (2007) ; Randolph (1998) , to model not just B. burgdor-

eri ’s enzootic transmission, but a leading effort to decrease trans-

ission. This will provide critical insight to public health officials,

esearchers, and institutions seeking to assess the effectiveness of

accines before they invest in their implementation, and will also

rovide additional data to the small body of field trials that have

een done. 

In this study, we model interacting tick and mouse popula-

ions subdivided by infection status and (for ticks) life stage. In

he following sections of this report, we develop a system of dif-

erence equations to describe annual populations while account-

ng for their complex life cycle seasonality; then we follow clas-

ical qualitative analysis with a cost analysis to compare vaccina-

ion costs to the economic impact of cases avoided. Our aim is to

odel a tick-mouse cycle in a fragmented forest environment in

he northeastern United States, where field data are available and

here human risk is especially high ( Schwartz et al., 2017 ). 

. Methods 

.1. Assumptions and definitions 

To model tick-mouse infection dynamics, we consider certain

ssumptions. The first is that mice and ticks mix homogeneously

t all stages, and that infection does not affect their behavior or

nteractions within a given geographical area. While we do account

or mice having more contacts with larvae than with nymphs,

ouse-tick contact rates are taken to be independent of infec-

ion status in both mouse and tick. We also assume that infec-

ion with B. burgdorferi does not affect mouse birth or death rates,

or tick hatching, death, or biting rates. We assume this because

vidence suggests that B. burgdorferi does not cause any disease

n ticks or white-footed mice, making them an excellent reservoir

ost ( Voordouw et al., 2015 ). The reproductive fitness of white-

ooted mice is also unaffected by the presence of the parasitic ticks

 Hersh, 2014 ). 

We also assume that infectious mice and ticks remain in-

ectious for the rest of their lives, which is supported by cur-

ent research on B. burgdorferi in I. scapularis and P. leucopus
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Fig. 1. Mouse and tick compartmental model. Rates shown are per capita; transi- 

tions without rate labels indicate tick life stage progression over time. 
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Table 1 

State variables for mice and ticks, taken 

at time t . 

Variable Definition 

M ( t ) Total Mouse Population 

M S ( t ) Susceptible Mice 

M I ( t ) Infected Mice 

M V ( t ) Vaccinated Mice 

L S ( t ) Susceptible Larvae 

N ( t ) Total Nymph Population 

N I ( t ) Infected Nymphs 

N S ( t ) Susceptible Nymphs 

A I ( t ) Infected Adults 

A S ( t ) Susceptible Adults 

Table 2 

Parameters for population dynamics. 

Parm. Definition 

�M Birth/recruitment of mice 

βM Transmission constant from nymphs to mice 

ψ Contact between mice and vaccines 

ω Proportion of vaccine effectiveness 

μ Natural death of mice 

�T Recruitment of larvae 

βL Transmission constant from mice to larvae 

βN Transmission constant from mice to nymphs 

α1 Egg to larva natural death 

α2 Larva to nymph natural death 

α3 Nymph to adult natural death 

p  

g

 

d  

e  

a  

v  

s  

r  

i  

o  

w

 

d  

a  

t  

b  

a  

t  

s  

b  

s  

b  

o  

b  

f  

p  

t  

n  

a  

a  

o

 

b  

t  

(  

l  
 Barbour and Fish, 1993; Ostfeld and Keesing, 20 0 0; Schwan

t al., 1988 ). We assume that every larva or nymph either dies

r successfully feeds to molt before the cohort’s next questing

eason, which is true for the overwhelming majority of ticks

 Centers for Disease Control and Prevention, 2018 ). We adopt this

implifying assumption because the tick life cycle (outlined in

ection 2.2 ) generally allows enough time (outside any winter di-

pause) to find a host and molt before the next questing period

see Fig. 2 ). This allows death and molting to be modeled sepa-

ately: any larva or nymph that does not die before the cohort’s

ext questing period is assumed to progress to nymph or adult, re-

pectively, with the same infection status. Another assumption in

his model is that ticks are only infected by mice (and vice versa)

ince white-footed mice have a very high population density and

re larvae’s primary hosts ( LoGiudice et al., 2003 ). White-footed

ice also transmit and receive B. burgdorferi with greater effective-

ess than other tick hosts, making them primary spreaders of the

athogen ( Barbour et al., 2015 ). The model incorporates seasonal-

ty by having only one life stage of tick feed at a given time. Here,

ick questing/feeding periods are mostly divided into two separate

easons although in reality there is some overlap, particularly for

ymphs and larvae, which will not be taken into account in this

ork. The final assumption of our model is that infected ticks and

ice do not transmit B. burgdorferi to their offspring ( Mather et al.,

991; Rosa and Pugliese, 2007 ). 

For our model, we build a system of nonlinear difference equa-

ions describing a susceptible, infectious, and vaccinated ( M S , M I ,

 V ) mouse population ( P. leucopus ) coupled with a susceptible and

nfectious ( N S , N I ) tick population ( I. scapularis ). To understand the

echanisms of these populations, life cycles, and infectiousness,

e construct a compartmental diagram representing the system’s

ynamics, including seasonality. A flow chart capturing the dynam-

cs of the system is shown in Fig. 1 , and state variables and model
arameters are summarized in Tables 1 and 2 (units and values are

iven in Table 3 ). 

Mice have a constant birth �M 

per generation and a uniform

eath rate μ, with an annual probability of survival thus given by

 

−μ. All mice are born as susceptible, but can then be vaccinated

t a rate ψω, where ψ is the rate per year at which mice become

accinated and ω the percent effectiveness of the vaccine. If not

uccessfully vaccinated, they become infected by a nymphal tick at

ate βM 

N I 
N , where βM 

is a contact rate (in 1/yr) and 

N I 
N gives the

nfection prevalence of nymphs. The infection rate depends only

n nymphs because we assume that larvae do not hatch infected

ith B. burgdorferi so they cannot infect mice when they feed. 

Ticks also have a constant recruitment per generation which is

efined as �T , being the number of larvae hatching every year. We

ssume a probability of death as e −αi , with each αi corresponding

o a respective stage change’s natural death as in Table 2 . A larva

ecomes infected at rate βL 
M I 
M 

, where βL gives the rate (in 1/yr)

t which a larva has potentially infectious (to the larva) bite con-

act with mice. Any larva that does not become infected or die at

eason’s end progresses to a susceptible nymph. This transition is

ased on the assumption that no larvae survive through the next

ummer without feeding and progressing to nymphs. Nymphs then

egin feeding, and susceptible nymphs can be infected at a rate

f βN 
M I 
M 

, where βN denotes the rate (in 1/yr) at which a nymph

ites mice multiplied by the proportion of times the bacteria in-

ect a susceptible nymph if it bites an infected mouse. At this

oint infected nymphs that do not die can also feed on a suscep-

ible mouse to infect it as described for mice above. All infectious

ymphs and susceptible nymphs that do not die become infectious

nd susceptible adults respectively. This transition is based on the

ssumption that no nymphs survive through the next spring with-

ut feeding and progressing to adults. 

The infection rates described in the preceding paragraphs can

e derived from the common assumption that the vector-host con-

act rate is proportional to vector density together with the fact

derived formally in Section 3.1 ) that the host and vector popu-

ations are constant from year to year (unaffected by infection).
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Fig. 2. Two-year tick life cycle with overlapping generations. 

Table 3 

Parameter values for mouse and tick population dynamics. 

Parameter Definition Value Units Reference 

M ∞ Total mouse population 50 mice ( Nupp and Swihart, 1996 ) 

�M Birth/recruitment of mice 65.02 mice 

ψ Contact between mice and vaccines varied 1/year 

βM Transmission constant from nymphs to mice varied 1/year 

ω Proportion of vaccine effectiveness 0.96 — ( Schwendinger et al., 2013 ) 

μ Natural death rate of mice 4.38 1/year ( Ogden et al., 2007; Wang and Zhao, 2017 ) 

N ∞ Total nymph population 1000 ticks ( Allan et al., 2003 ) 

�T Recruitment of larvae 1.998 × 10 5 ticks 

βL Transmission constant from mice to larvae varied 1/year 

βN Transmission constant from mice to nymphs varied 1/year 

α1 Egg to larva natural death 11.98 1/year ( Randolph, 1998 ) 

α2 Larva to nymph natural death 3.07 1/year ( Randolph, 1998 ) 

α3 Nymph adult natural death 3.22 1/year ( Randolph, 1998 ) 
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Assuming (consistent with observation) that vectors (here, tick

nymphs) can bite hosts (mice) as often as desired, the overall rate

of potentially infectious contacts can be given by βN . Further as-

suming that these contacts are unaffected by host or vector infec-

tion status, a fraction M S / M involve uninfected mice, and a fraction

N I / N involve infected nymphs, so the overall rate of new host infec-

tions is βN 

M S 
M 

N I 
N . To simplify units, we rewrite this as (β N 

M 

) 
N I 
N M S 

and, since N and M are constant, define βM 

= β N 
M 

, leading to the

infection rates given in the foregoing paragraphs, and to parame-

ters with units of 1/time. 

2.2. Model development 

In order to derive the final model, we first divide a one year

time step into several subintervals, with each subinterval describ-

ing one specific process in the cycle. After each of the events

is mathematically described, they can be chained together to de-

scribe the population dynamics from year to year. First, each im-

portant event in the system is associated with one or more arrows

on the flowchart. The full list of transition equations derived from

these events is provided in Appendix A.1 . 

For a visual representation of how the 2-year tick life cycle fits

in to a model with 1-year time steps see Fig. 2 . Although there

is only one generation and life stage assumed to be questing and

feeding at a time, there are 2 generations that overlap each year.

Our yearly cycle begins with nymphs in the spring which quest,

feed, and begin molting to the adult phase. We then consider the

larvae which hatch from the eggs of the previous year’s adults and

begin questing and feeding in the summer. These larvae will go on

to become the next year’s nymphs. In the summer those nymphs

are dormant while they transition to adulthood and the larvae that

hatched in the end of the spring begin questing and feeding. Those
arvae molt during the fall and winter. In the fall, the adults, who

ere nymphs in the spring, lay the eggs for the next spring. 

These building blocks are designed to be modular to allow for

 possible different ordering of events. For the purposes of this

odel, the cycle is taken to begin and end in the spring, which

s peak nymph activity. Thus the following sequence of events for

he life cycle and transmission dynamics of the populations is con-

idered: 

pring 

1. Mice are vaccinated 

Mice are vaccinated at the beginning of our time step because

we want to measure the impact of vaccination as protection

against nymphal ticks; thus vaccination must take place before

nymphal ticks begin questing and feeding in the spring. 

2. Susceptible mice become infected 

Mice being infected is the first event related to the nymphal

feeding season. Larvae infected in the previous year have now

progressed to nymphs and can infect mice by taking blood

meals. 

ummer 

3. Nymphs become adults 

Nymphs becoming adults means that the nymph successfully

feeds, and from there any of the following may occur: 
• Infected nymphs become infected adults (infected nymph

potentially infects host) 
• Susceptible nymphs can become infected adults 
• Susceptible nymphs can become susceptible adults 

4. Mice die 

Here we account for mouse deaths that happen in the spring,

after vaccination and after nymphs have fed. We separate this

event from the other event of deaths in mice to account for the



D. Carrera-Pineyro, H. Hanes and A. Litzler et al. / Journal of Theoretical Biology 494 (2020) 110245 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

1

 

 

 

1

 

 

 

 

0  

t  

d  

o  

t  

y  

T  

c  

t  

t  

u  

l

 

fl  

i  

t  

a  

w  

(  

I  

y  

o  

d  

t  

l  

a  

p  

s  

e  

c

 

1  

n  

w  

e  

o  

p  

t  

i  

o

 

n  

A  

a  

H  

v

 

t  

e

N  

a

 

n  

c  

m  

t  

f  

m  

d  

f  

t  

d  

a

 

e  
mice that are infected in the spring but do not survive to infect

larvae in the summer. 

5. Mice are born 

Here we account for new births in the mice population that

happen in the spring after vaccination and the feeding of

nymphs. We separate this event from the other event of births

in mice so as to maintain a consistent population size after the

deaths calculated in the previous step. 

6. Larvae hatch 

Eggs hatch throughout the summer and become larvae. These

larvae do not feed until the following spring (see Fig. 2 ). 

7. Larvae die 

Here we account for larval deaths that occur during the hatch-

ing season and while questing. Thus the later steps involving

larvae can assume that all remaining larvae successfully feed. 

8. Larvae feed on mice 

Here all remaining larvae successfully feed and become either

infected or susceptible nymphs based on whether they feed

on an infected mouse and receive the bacteria. In our model,

we count these larvae as nymphs immediately after they feed

whereas in reality they will not finish molting to nymphs until

next spring. 
• Susceptible larvae can become susceptible nymphs 
• Susceptible larvae can become infected nymphs 

all through winter 

9. Nymphs die 

Here we account for all nymphs that died during molting or

while questing. Thus the size of our nymph population is rep-

resentative of the nymphs that successfully feed and progress to

adult, rather than counting nymphs that would have died while

molting. 
• Infected nymphs die 
• Susceptible nymphs die 

0. Mice die 

Here we account for death that takes place from the beginning

of summer until the end of winter so that our mouse popula-

tion count is representative of the population at the beginning

of spring. 

1. Mice are born 

Here we account for birth that takes place from the beginning

of summer until the end of winter so that our expression for

mouse population is representative of the population at the be-

ginning of spring. 

In Fig. 2 , different generations are designated by the subscripts

, 1, and 2. Generation 0 finishes in fall of the first year, Genera-

ion 1 covers the two-year span of the image, and Generation0 ′ s
escendants, Generation 2, begin their lives in summer of the sec-

nd year. The subscripts are not the same as the t -indexed yearly

ime steps in the model. The nymphs and adults for a particular

ear are the same generation of ticks, while the larvae are another.

he vertical axis does not depict relative population size, but indi-

ates respective seasons of questing individuals. In our model, the

otal population of any stage of tick in each year is the same as the

otal population of the same stage in all other years, which allows

s to organize their two-year cycle in one year. This will be shown

ater in the analysis section. 

To construct our system of equations, we use each rate on the

owchart to create an expression for population before and after

ts associated event, and then proceed by combining those equa-

ions into the full system. As an example, consider μ, the rate

t which mice die. In a discrete-time system, such rates appear

ithin exponents to reflect the proportions of populations making

or not) the corresponding transition during a given time period.
f we integrate to find the total population before and after one

ear’s worth of deaths we get M(t + 1) = e −μM(t) . The proportion

f mice that survive is e −μ. Likewise, the proportion of mice that

ie is 1 − e −μ. Thus each exponential term containing a rate has

hat rate multiplied by 1 year, making the exponent dimension-

ess. Our time step of one year is subdivided by seasons in order to

ccurately account for tick life/activity stages; thus some of the ex-

onents are shown to be fractions. For example, e −3 μ/ 4 represents

urvival after three out of the four seasons. This use of fractional

xponents is used for recruitment, death, vaccination, and contact

onstants. 

To organize this ordering of events we separate the year into

1 sub-timesteps { t + 

i 
11 | i = 1 , 2 , . . . , 11 } . These sub-timesteps do

ot necessarily correspond to a certain interval of time, and often

e account for an entire year’s worth of a particular process in

ach sub-step. If we wish to account for processes over only part

f the year our proportions will be of the form e −ζ /k for arbitrary

arameter ζ and fraction of the year 1/ k . Furthermore, nonlinear

erms will reference other state variables in the exponent, which

ntroduces more complexity to the final equations. A full derivation

f the system of equations can be found in Appendix A.2 . 

The final system of Eq. (1), relating populations of mice and

ymphs starting and ending during spring, is presented below.

dult and larvae stages are not included in these final populations

s larvae have not yet hatched and adults died in the previous fall.

owever, the intermediate steps contain solutions for each stage at

arious points in the year. 

Let M(t) = M S (t) + M I (t) + M V (t ) and N(t ) = N S (t) + N I (t) , the

otal population of mice and ticks, respectively. Then the system of

quations, system (1), is given by: 

 I (t + 1) = �T e 
− (α1 +3 α2 ) 

4 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 − e 
− βL 

4 

M I (t) e 
− μ

4 + M S (t) e 
− μ

4 e 
− ψω 

4 

⎛ 
⎝ 1 −e 

− βM 
2 

N I (t) 

N(t) 

⎞ 
⎠ 

e 
− μ

4 M(t)+ �M 
4 

⎞ 

⎟ ⎟ ⎟ ⎠ 

,

(1a) 

N S (t + 1) = �T e 
− (α1 +3 α2 ) 

4 

⎛ 

⎜ ⎜ ⎜ ⎝ 

e 
− βL 

4 

M I (t) e 
− μ

4 + M S (t) e 
− μ

4 e 
− ψω 

4 

⎛ 
⎝ 1 −e 

− βM 
2 

N I (t) 

N(t) 

⎞ 
⎠ 

e 
− μ

4 M(t)+ �M 
4 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

(1b) 

M S (t + 1) = M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 

(e −
3 μ
4 + 3) , (1c) 

M I (t + 1) = M I (t) e −μ + M S (t) e −μe −
ψω 

4 (1 − e −
βM 

2 

N I (t) 

N(t) ) , (1d) 

nd 

M V (t + 1) = M V (t) e −μ + M S (t) e −μ(1 − e −
ψω 

4 ) . (1e) 

The number of susceptible mice at time t + 1 is equal to the

umber of susceptible mice that did not die, did not become vac-

inated, and did not become infected in the previous year plus the

ice that were born—accounting for the fact that mice are born

hroughout the year by allowing 1/4 to be born before the larvae

eeding season and 3/4 to be born after. The number of infected

ice at time t + 1 is equal to the number of infected mice that

id not die plus the number of susceptible mice that became in-

ected and did not die. Likewise, the number of vaccinated mice at

ime t + 1 is equal to the number of vaccinated mice that did not

ie plus the number of susceptible mice that became vaccinated

nd did not die. 

The number of infected and susceptible nymphs at time t + 1 is

qual to the number of eggs hatched times the survival rate times



6 D. Carrera-Pineyro, H. Hanes and A. Litzler et al. / Journal of Theoretical Biology 494 (2020) 110245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

s

3

 

t  

N  

S

 

s  

t  

l

T  

t  

e  

t  

p

 

t  

t  

a  

l  

t  

D

μ) 
3 μ/ 4 )

 

λ

 

S
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the probability of becoming infected or not becoming infected, re-

spectively. This rate is based on a contact rate times the proportion

of all mice which were infected in the previous summer. 

3. Qualitative analysis 

3.1. Equilibrium densities of I. scapularis and P. leucopus 

The total population size of mice can be described by calculat-

ing M(t + 1) , the sum of the susceptible, infected, and vaccinated

compartments at time t + 1 . 

M(t + 1) = M S (t + 1) + M I (t + 1) + M V (t + 1) 

M(t + 1) = e −μM(t) + 

�M 

4 

e 
−3 μ

4 + 

3 

4 

�M 

This is a linear difference equation whose solution is: 

M(t) = M(0)(e −μ) t + 

�M 

4 

(e −
3 μ
4 + 3) 

t−1 ∑ 

j=0 

e −μ j 

= M(0)(e −μ) t + 

�M 

4 

(e 
−3 μ

4 + 3) 

(
1 − (e −μ) t 

1 − e −μ

)

Since μ is a positive constant, e −μ is a proportion and 0 < e −μ < 1 .

Therefore we define 

M ∞ 

= lim 

t→∞ 

M(t) = 

�M 

4 

(e −
3 μ
4 + 3) 

1 − e −μ
. (2)

This is the mouse population at demographic steady state, and it

can also be written as: 

M ∞ 

= 

�M 

4 

e −3 μ/ 4 1 

1 − e −μ
+ 

3�M 

4 

1 

1 − e −μ

In biological terms, it is the number of mice born during event 5

of any year that did not die plus the number of mice born during

event 11 of any year. Since the mouse-tick system is well estab-

lished prior to the introduction of any control measures, we hence-

forth assume that M(0) = M ∞ 

, so that M(t) = M ∞ 

for all t > 0. 

Similar calculations can be performed on the total nymphal

tick population with N(t + 1) equal to the sum of the susceptible

and infected tick populations at time t . In the construction of this

model, we assumed that there are no demographic pressures on

the population other than the constant birth and death rates, so

N ( t ) is constant from year to year as well. That is, 

N(t + 1) = N S (t + 1) + N I (t + 1) = �T e 
− (α1 +3 α2 ) 

4 ;

thus, N(t) = N ∞ 

= �T e 
− (α1 +3 α2 ) 

4 for all time t . 

The total nymph population is equal to the number of hatched

eggs times the proportion of nymphs that do survive before the

sampling time. It follows from this calculation of M ∞ 

and N ∞ 

that we can reduce system (1) to a system of three equations. Let

M S (t) = M ∞ 

− (M I (t) + M V (t)) and N S (t) = N ∞ 

− N I (t) . The system

becomes system (3), which is only in terms of the N I , M I , and M V 

populations. System (3) will be used throughout the rest of the

paper, including in the numerical simulations ( Section 4 ), and is

J 
∣∣

DF E 
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

βM βL 

8 

(
3 e 

− μ
4 + e −μ

)
e 

− 3 μ
4 

− ψω 
4 (

1 −e 
−μ− ψω 

4 

) ( 1 −e −

( 3 e −μ+ e −

βM �M 

8�T 

(
3 e 

− μ
4 + e −μ

)
e 

− 3 μ
4 

− ψω 
4 (

1 −e 
−μ− ψω 

4 

)
e 

− (α1 +3 α2 ) 
4 

0 
iven by: 

N I (t + 1) = �T e 
− (α1 +3 α2 ) 

4 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 − e 
− βL 

4 

M I (t) e 
− μ

4 + ( M ∞ −M I (t ) −M V (t ) ) e 
− μ

4 e 
− ψω 

4 

⎛ 
⎝ 1 −e 

− βM 
2 

N I (t) 
N ∞ 

⎞ 
⎠ 

e 
− μ

4 M ∞ + �M 
4 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, 

(3a)

M I (t + 1) = M I (t) e −μ + ( M ∞ 

− M I (t) − M V (t) ) e −μe −
ψω 

4 ( 1 − e −
βM 

2 

N I (t) 

N ∞ ) , and 

(3b)

M V (t + 1) = M V (t) e −μ + ( M ∞ 

− M I (t) − M V (t) ) e −μ( 1 − e −
ψω 

4 ) . 
(3c)

In the next section we proceed to calculate the fixed points of

ystem (3) in order to understand its long-term dynamics. 

.2. Disease-free equilibrium 

To find fixed points, we start by setting the equations in sys-

em (3) equal to their respective populations. That is, N I (t + 1) =
 I (t) = N 

∗
I 
, M I (t + 1) = M I (t) = M 

∗
I 
, and M V (t + 1) = M V (t) = M 

∗
M 

.

etting N 

∗
I 

= 0 yields the disease-free equilibrium (DFE), 

N 

∗
S = N ∞ 

, N 

∗
I = 0 , M 

∗
S = M ∞ 

1 − e −μ

1 − e −μ− ψω 
4 

, M 

∗
I = 0 , 

and M 

∗
V = M ∞ 

e −μ(1 − e −
ψω 

4 ) 

1 − e −μ− ψω 
4 

. 

As expected, the total population is at demographic steady

tate: M 

∗
S 

+ M 

∗
V 

= M ∞ 

. We can also interpret the mouse popula-

ions at disease-free equilibrium as proportions of the total equi-

ibrium mouse population. That is, 

M 

∗
S 

M ∞ 

= 

1 − e −μ

1 − e −μ− ψω 
4 

and 

M 

∗
V 

M ∞ 

= 

e −μ(1 − e −
ψω 

4 ) 

1 − e −μ− ψω 
4 

. 

he expression 

M 

∗
S 

M ∞ 

is the proportion of mice that die, and are

hus replaced at demographic equilibrium, over the proportion that

ither get vaccinated or die. Furthermore, 
M 

∗
V 

M ∞ 

is the proportion

hat survive times the proportion that do get vaccinated over the

roportion that either die or get vaccinated. 

The stability of the disease-free equilibrium can be analyzed ei-

her via the control reproduction number R C or by linearizing sys-

em (3), calculating the Jacobian at the disease-free equilibrium,

nd identifying the eigenvalues. Notice that this matrix is singu-

ar; the first row is a constant multiple 
e 
− (α1 +3 α2 ) 

4 ( 1 −e −μ) βL �T 

( 3 e −μ+ e −3 μ/ 4 ) �M 
of

he second. The Jacobian matrix of system (3) ( N I , M I , M V ) at the

FE is given by 

 

e −μ e 
− (α1 +3 α2 ) 

4 ( 1 −e −μ) βL �T 

( 3 e −μ+ e −3 μ/ 4 ) �M 
0 

e −μ 0 

−e −μ
(

1 − e −
ψω 

4 

)
e −μ− ψω 

4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The eigenvalues of this matrix are λ1 = 0 , λ2 = e −μ− ψω 
4 , and

3 = (1 − e −μ) r + e −μ, where 

r = 

βM 

βL e 
− ψω 

4 

8(1 − e −μ− ψω 
4 ) 

(
e −μ + 3 e −μ/ 4 

1 + 3 e −μ/ 4 

)
. (4)

ince | λ1 | < 1, | λ2 | < 1, the DFE is locally asymptotically stable iff

 λ | < 1. But λ > 0, and some algebra shows that λ < 1 iff r < 1.
3 3 3 
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Fig. 3. An endemic equilibrium of the model is a root of the function G . 
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Although r < 1 is a condition for stability, r � = R C . But by

llen and van den Driessche (2008) either r = R C = 1 , 1 < r ≤ R C ,

r 0 ≤ R C ≤ r < 1 , meaning stability conditions based on r are

quivalent to stability conditions based on R C . The canonical value

f R C can be calculated using the next-generation matrix approach

see Appendix A.4 for details): 

R C = 

1 

2 

(
r(1 − e −μ) + 

√ 

r 2 (1 − e −μ) 2 + 4 re −μ

)
. (5) 

his expression, which gives the average number of secondary in-

ections (of either species) produced by a single infective of the

ame species introduced into a completely susceptible population,

epends on 

∂N I (t+1) 
∂N I (t) 

= r(1 − e −μ) and a term representing 
∂N I (t+1) 
∂N I (t) 

imes e −μ

1 −e −μ , the equilibrium proportion of mice that have survived

rom previous years. By inspection, r < 1 iff R C < 1 . 

We note that R 0 , the basic reproduction number, is analogous

o R C but defined for a context in which no control method, no

accination in this case, is introduced into the population. An ex-

ression for R 0 can be derived by setting ψ = 0 in Eq. (5) for R C . 

.3. Endemic equilibrium 

To determine the existence of further fixed points we reduce

he system of equilibrium conditions to one equation. We solve

he steady-state version of Eq. (3c) for M 

∗
V 

in terms of M 

∗
I 

and

q. (3b) for M 

∗
I 

in terms of N 

∗
I 

. Substituting the resulting expres-

ions into Eq. (3a) , we can write a single equation in terms of N 

∗
I .

or the full derivation, see Appendix A.5 . Equilibria are then roots

f this equation on the interval [0,1]: 

G 

(
N 

∗
I 

N ∞ 

)
= ln 

(
1 − N 

∗
I 

N ∞ 

)
+ 

βL M ∞ 

e −
μ
4 e −

ψω 
4 

4 
(
e −

μ
4 M ∞ 

+ 

�M 

4 

)
( 

1 − e −
βM 

2 

N ∗
I 

N ∞ 

1 − e −μ− ψω 
4 e −

βM 
2 

N ∗
I 

N ∞ 

) 

= 0 . 

(6) 
Since Eq. (6) is transcendental, we cannot find its zeroes an-

lytically. However, by inspection, we notice that G (0) = 0 , re-

ecting the existence of the disease-free equilibrium. In addition,

here exists a unique endemic equilibrium (a root of G in (0,1)) iff

 C > 1 , which can be seen as follows. By inspection, G (x ) → −∞
s x → 1 −. We calculate 

G 

′ (x ) = − 1 

1 − x 
+ 

βL βM 

M ∞ 

e −
μ
4 e −

ψω 
4 

8 

(
e 

−μ
4 M ∞ 

+ 

�M 

4 

) · (1 − e −μ− ψω 
4 ) e −

βM 
2 x (

1 − e −μ− ψω 
4 e −

βM 
2 x 

)2 

rom which 

G 

′ (0) = 

βL βM 

M ∞ 

e −
μ
4 e −

ψω 
4 

8 

(
e 

−μ
4 M ∞ 

+ 

�M 

4 

) · (1 − e −μ− ψω 
4 ) (

1 − e −μ− ψω 
4 

)2 
− 1 

nd also 

 

′ (x ) = 0 ⇔ 1 − x 

= 

8 

(
e 

−μ
4 M ∞ 

+ 

�M 

4 

)
βL βM 

M ∞ 

e −
μ
4 e −

ψω 
4 

·

(
1 − e −μ− ψω 

4 e −
βM 

2 x 

)2 

(1 − e −μ− ψω 
4 ) e −

βM 
2 x 

= h (x ) . 

ince some algebra shows that h ′ ( x ) > 0, and thus h ( x ) is increas-

ng, while 1 − x is decreasing, the two functions can intersect in at

ost one point. This occurs iff

h (0) = 

8 

(
e 

−μ
4 M ∞ 

+ 

�M 

4 

)
βL βM 

M ∞ 

e −
μ
4 e −

ψω 
4 

· (1 − e −μ− ψω 
4 ) < 1 , 

hich is the same condition as G 

′ (0) > 0 and also (since, from (2) ,
M ∞ 

e −μ/ 4 

M ∞ 

e −μ/ 4 +�M / 4 
= 

e −μ+3 e −μ/ 4 

1+3 e −μ/ 4 ) equivalent to r > 1 and thus R C > 1 .

ig. 3 illustrates graphs of G using three different sets of values

or the infection rates β and β , with other parameter values as
M L 
iven in Table 3 ; R C > 1 (and thus an endemic equilibrium exists)

or the first two curves, but not for the lower curve. 

Local stability analysis for the endemic equilibrium via the Ja-

obian matrix shows the endemic equilibrium is locally asymptot-

cally stable when it exists; see Appendix A.5 for details. 

. Numerical results 

.1. Parameter estimation 

Estimated values for model parameters are given in Table 3 .

here possible, they were taken from prior studies; in other cases,

ey parameters (infection rates β∗ and the vaccination rate ψ)

ere varied in numerical analysis, as detailed below. Most of these

arameters are given as rates in units of 1/year, often converted

rom 1/day as found in literature. 

The total mouse population of 50 and total nymph popula-

ion of 10 0 0 were estimated using data on mice and tick popu-

ations in fragmented forest areas, relating woodland size to popu-

ation density. We focused on plot sizes of 1.1 hectares to match

he study that gave us our proportion of vaccine effectiveness

 Schwendinger et al., 2013 ). Though the data varied, we chose pop-

lations that had biological significance and would allow us to

imulate our model. Values �M 

and �T were calculated from the

opulation death rates and sizes, using the equilibrium solutions

or the total mouse and tick populations as found in Appendix A.2 .

Values for the tick death rates α1 , α2 , and α3 were derived

rom survival proportions between each stage of the tick life cy-

le; exact calculations are in Appendix A.6 . 

The three sets of β values in units of 1/year, βN = 0.68, 0.86,

nd 1.47, βL = 3.41, 4.29, and 5.73, and βM 

= 7.05, 8.87, and 11.85,

ere estimated to signify very low, moderate, and high transmis-

ion rates, each respectively corresponding to approximately 20%,

5% and 50% of nymphs infected at equilibrium. Since biting rates

etween ticks and mice are dependent on abiotic factors and pro-

ortions of other nymph hosts that are not present in our model,

e wanted to use β values that would provide information on a

ide range of biologically feasible scenarios. All calculations for

arameter values are explained further in Appendix A.6 . 

.2. Numerical analysis 

Simulations were implemented using MATLAB. Baseline results

ith parameter values as given in Table 3 , intermediate infection

ates as given above, and vaccination rate ψ = 10 / year, showed

opulations reaching equilibrium within 6 years, and vaccination

riving a high endemic prevalence in ticks to a low one (see Fig. 4 ).

Examining endemic prevalence levels as functions of the infec-

ious contact rates ( Fig. 5 ) revealed a low, saturating asymptotic
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Fig. 4. Mouse (upper graphs) and nymph (lower graphs) populations with and without vaccination at βN = 0.86/year, βL = 4.29/year, βM = 8.87/year. 

Fig. 5. Asymptotic fixed points for infected mice and nymph proportions of popu- 

lation as βL varies, ψ = 0, R 0 ∈ [0, 12.68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Equilibrium population proportions at low contact rates as ψ varies with βN 

= 0.68/year, βL = 3.41/year, βM = 7.05/year, R C ∈ [0 . 18 , 3 . 02] . 
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value of approximately 1.2% for endemic prevalence in mice as in-

fection rates increase (in the absence of vaccination, ψ = 0 ). 1 This

can be explained by the ordering of events in our model, specif-

ically observing that three-fourths of mouse recruitment takes

place at the end of the year. Since all mice are born suscepti-

ble, these mice are counted as susceptible at our sampling time

in the next spring. Even if 100% of mice were to be infected after

the nymph biting period, those mice must survive fall, winter, and

most of spring to affect the next cycle, which gives biological jus-

tification to the trend in Fig. 5 explained above. Due to the short

life span of the mice, only a very low proportion of them actually

make it to the next spring, so biologically there should always be

a minimum number of susceptible mice in the spring. 

Another important finding of this analysis is that endemic

prevalence in mice reaches this asymptotic limit at a point ( βL =
4 /yr in Fig. 5 ) where the proportion of infected nymphs is still ap-

proximately 30%. This means that the spring population of mice

is not a good predictor of the proportion of infected nymphs that

year as the percent of nymphs infected could vary from 30% to

100% with very little measurable change in mouse infection preva-

lence. Additionally, the infected mouse population is so small for
1 We vary infectious contact rates by keeping a constant ratio between βN , βL , 

and βM . There is a set ratio between the mouse and the nymphal contact rate be- 

cause both depend on the rate at which ticks bite mice. To convert the tick biting 

rate to the mouse biting rate, we multiplied by the proportion of nymphs to mice. 

We then set βN to vary from 0 to 1.2/yr and then tested varying ratios between βN 

and βL until we found sets of contact rates that corresponded to percent nymphs 

infected at equilibrium that matched biological expectations ( Richer et al., 2014 ). 

a  

m  

t  

c  

q  

m

ny infectious contact rates that any field estimation would be very

ifficult. In short, while the exact maximum proportion of infected

ice will vary between geographical regions and mice habitats, the

roportion of infected mice measured in the spring is not a good

redictor for Lyme disease risk that year. 

To analyze the effect of vaccination on the transmission cycle,

e graph endemic equilibria with respect to varying vaccination

ates, ψ , at the low ( Fig. 6 ), medium ( Fig. 7 ), and high ( Fig. 8 )

est values for contact rates between mice and ticks discussed in

ur parameter estimation. These plots show that the number of

nfected ticks can be reduced to less than one (less than 10 −3 

roportion infected since the nymphal population size is 10 0 0) at

accination rates of approximately 2/year, 4/year, and 6/year 2 for

he low, medium, and high sets of infectious contact rate values

espectively. This shows an approximately linear relationship be-

ween endemic prevalence in ticks without vaccination and the

accination rate required to control the epidemic. If equilibrium

nfection prevalence increases by 15% then the vaccination rate re-

uired to eliminate the pathogen is an additional 2/year. For ex-

mple, the low set of contact rates which correspond to approxi-

ately 20% of nymphs infected require a vaccination rate of 2/year

o be reduced to less than one infected tick ( Fig. 6 ). The medium

ontact rates which correspond to approximately 35% infected re-

uire a vaccination rate of 4/year to be reduced to less than one in-
2 A note on interpretation: A vaccination rate of ψ = 6 / year means it takes one 

ouse an average of 1/6 of a year to encounter a bait box. 
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Fig. 7. Equilibrium population proportions at medium contact rates as ψ varies 

with βN = 0 . 86 /year, βL = 4 . 29 /year, βM = 8 . 87 /year, R C ∈ [0 . 28 , 4 . 77] . 

Fig. 8. Equilibrium population proportions at high contact rates as ψ varies with 

βN = 1.47/year, βL = 5.73/year, βM = 11.85/year, R C ∈ [0 . 48 , 8 . 51] . 
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3 0 . 005 ∗ 365 = 1 . 825 /year. Nymphs are active for only half the year, and 

1.825/2 ≈ 0.913. 
ected tick ( Fig. 7 ). A similar change is seen again from the medium

ontact rates to the high contact rates, corresponding to 50% of

ymphs infected, as they require a vaccination rate of 6 per year

o be reduced to less than one infected nymph ( Fig. 8 ). This can

e a guide to those seeking to introduce vaccination across a va-

iety of areas who may not have the aid of computational tools to

ecalculate vaccination rates for each area. 

We note that the values of the vaccination rate ψ required to

educe the control reproduction number R C to less than 1 are sig-

ificantly greater than the vaccination rates required to reduce the

umber of infected ticks to less than 1. For small β values, this is

t ψ = 4 . 58 /year, for medium β values, it is at ψ = 6 . 55 /year, and

t large β values, this is at ψ = 11 . 04 /year. The practical difference

etween these two thresholds lies in the scale of the population

eing modeled: as the total population size increases, the min-

mum detectable endemic prevalence approaches 0 and the two

hresholds converge. We remind the reader that our choice of scale

ere reflects the model’s implicit assumption that the populations

ix homogeneously. 

Since equilibria may take many years to reach, we also mapped

he effect of vaccination on the proportion of infected nymphs af-

er two, five, and ten years in Fig. 9 . These results showed that, not

nly can vaccinating mice significantly reduce the endemic preva-

ence, it can do so within short time periods. Vaccination was ef-

ective at reducing the number of infected nymphs to zero for all
nfectious contact rates within the range of vaccination rates sam-

led. As the figure indicates, equilibrium proportions of infected

icks above 20% were reached quickly (within two years) but the

ime required to reach lower equilibrium prevalences in ticks de-

ended strongly on vaccination rates. This means that reaching

quilibrium prevalences lower than 20% typically takes more than

wo years (but can be accelerated by increasing vaccination): if the

roportion of infected ticks is above 20%, individuals using vac-

ines to reduce the number of infected ticks should expect to see

he same results every year after two years; however, for lower

roportions, they should see a lower number of infected ticks each

ear if continuing to vaccinate at the same rate. 

.3. Risk and cost analysis 

Through risk and cost analysis we can understand the effective-

ess of mouse vaccination at reducing human cases of Lyme dis-

ase. We have determined that vaccines can significantly reduce

he number of infected nymphal ticks in an area; thus we also

ompare the cost of vaccination with reductions of human risk to

etermine if the intervention is cost saving. In order to predict the

hange in the risk of human Lyme disease cases, we construct the

ollowing function for the yearly number of new human cases, I ( t ),

lso known as the incidence rate: 

I(t) = ρ · γ · H S · N I (t) 

N 

, 

here γ is the biting rate of tick nymph per human per year, H S is

he number of humans at risk, ρ is the probability of infection for

umans after a bite from an infectious nymph, and N I ( t )/ N is the

urrent infection prevalence in nymphs (dependent on ψ and β
alues). Although adult ticks also bite humans, we do not include

hese contacts in our model because this is minimal in terms of

ransmitting infection to humans; due to the large size of these

icks, most are detected and removed before the necessary time to

ransmit the infection ( Caraco et al., 2002; Ostfeld et al., 1995 ). We

ake the value of ρ to be 0.031, obtained by taking an average from

 range of values in our source ( Magid et al., 1992 ). We found γ to

e valued at 0.005/day, or equivalently 0.913/year, 3 from another

odel but decided to vary this value since it was unclear how this

had been calculated ( Wang and Zhao, 2017 ). 

More precisely, H S is the number of people who spend their tick

xposure time in that tick-infected region. There are three compo-

ents to H S . First is the yearly number of unique people that move

hrough an area. Second is the average percentage of those peo-

le’s tick exposure time spent in the vaccination area. Third is the

ercentage of that area covered by 1 hectare. For example, 10 0 0

nique people may walk on a suburban trail in a year. Since this a

eighborhood trail, most of those people likely walk dogs or spend

ime with their children regularly there, so the average person may

pend 80% of their total time exposed to ticks on that trail. Finally,

hat trail may be a kilometer long, so if mice are vaccinated for

0 m on either side of the trail, the total vaccination area would be

 hectares; thus a single hectare of vaccination would only cover

0% of the total trail risk. This gives us our first estimated H S value

f 10 0 0 ∗ 0 . 8 ∗ 0 . 2 = 160 . The other two estimated values follow

imilarly. One accounts for a similar trail, but less populated, and

he other represents a public park. Table 4 compares these three

cenarios. 

To analyze the cost of Lyme disease treatment, we examine the

elationship between total cost of implementing mouse vaccination

nd average cost for Lyme disease treatment per infected person.

e assume a linear relationship between the vaccination rate ψ 
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Fig. 9. Vaccine effect on nymphs compared to years of use for low, medium, and high contact rates, R C ∈ [0 . 18 , 3 . 02] , R C ∈ [0 . 28 , 4 . 77] , and R C ∈ [0 . 48 , 8 . 51] ( β values in 

1/yr). In each case the corresponding endemic equilibrium without vaccination was used for initial conditions. 

Table 4 

Scenarios for estimation of H S values. 

H S value 80 160 750 

Geographical area Trail Trail Park 

Number of people 500 1000 5000 

Proportion of time spent 80% 80% 30% 

Proportion of area covered 20% 20% 50% 
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Fig. 10. Dollars saved after 10 years of vaccination on a low traffic trail for varying 

nymphal biting rates, H S = 80, medium contact rates. Negative dollars saved means 

more money was spent than saved. Only at the highest tick feeding rate was vacci- 

nation cost saving. 
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and the increase in cost per increase in vaccination rate, x . Since

white-footed mice are territorial, it is possible that a particular

nest of mice are the only ones feeding from a particular bait box

( Aguilar, 2018 ). Thus, the same number of mice would access each

box regardless of the number of boxes until all mice are vacci-

nated, making this assumption biologically feasible. This achieves

the following cost function, 

C total = x · ψ + I · θ, 

where θ is the average cost of Lyme disease treatment per in-

fection, calculated to be $3537.70 per person within the first 12

months following diagnosis with Lyme disease based on studies of

health care costs of Lyme disease ( Adrion et al., 2015 ), as shown

in Appendix A.6 . Using data from a field study of vaccines tar-

geting white-footed mice, we estimated x to be $329.29 per unit

increase in ψ ( Interlandi, 2018; Richer et al., 2014 ), as shown in

Appendix A.6 . Since we are assessing cost over a 10 year period we

calculate cost taking into account inflation and use the September

2018–September 2019 consumer price index (CPI) change of 1.7%

as the approximate inflation rate ( U. S. Bureau of Labor Statistics,

2019 ). Since we calculate cost discretely in our model, we assume

costs are accumulated at the end of each year assessed. This means

that since we assessing cost in current year dollars, the cost ac-

cumulated in the first year for example would be the base cost

 

∗
t=1 times R 10 −1 = R 9 , where R = 1 . 017 is our inflation rate, to get

 t=1 = C ∗t=1 ∗ R 9 = 1 . 164 C ∗t=1 . Thus the total cost will be given as 

C t= i = 

(
x · ψ + θ · ρ · γ · H S 

N I 

N 

)
∗ R 

10 −i . (7)

For a summary of parameter definitions and values for the cost

function see Table 5 . 
Since N I is a decreasing function of ψ , we have an optimization

roblem to adjust vaccination rate to maximize cost savings (rela-

ive to no vaccination) for a human population infected with Lyme

isease and mouse vaccination intervention after ten years across

arying values of γ . Figs. 10–12 represent susceptible populations

f 80, 160, and 750 humans, respectively. In all of these plots we

bserve a similar trend in that the higher the biting rate γ , the

ore money saved. However, only for a human population size

f 10 0 0 does vaccination become cost saving for every γ value. In

ach case there is a cost-optimal value for ψ . The greater the hu-

an population, the greater this optimal vaccination rate. The cost

avings also scale up for larger human populations. In the parks,

ith the highest number of susceptible humans, vaccination saved

p to approximately $170,0 0 0 in the first ten years, whereas sig-

ificantly less money is saved from vaccinating on trails. We note

hat even if minimal money is saved from vaccinations, the inter-
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Table 5 

Parameters, with values, for risk and cost equations. 

Parm. Definition Unit Value Source 

x Increase in cost per increase in vaccination rate dollars $329.29 ( Richer et al., 2014 ) 

ψ Contact between mice and vaccines 1/year varied –

θ Average cost of Lyme disease treatment dollars/infection $3537.70 ( Adrion et al., 2015 ) 

ρ Probability of infection for humans after nymph bite infections/bites 0.031 ( Magid et al., 1992 ) 

γ Biting rate of tick nymph per human per year bites/(human · yr) varied –

H S Susceptible humans people varied –

R Inflation Rate - 1.017 ( U. S. Bureau of Labor Statistics, 2019 ) 

Fig. 11. Dollars saved after 10 years of vaccination on a high traffic trail for varying 

nymphal biting rates, H S = 160, medium contact rates. Negative dollars saved means 

more money was spent than saved. Vaccination was cost saving at moderate to high 

tick feeding rates. 

Fig. 12. Dollars saved after 10 years of vaccination in a suburban park for vary- 

ing nymphal biting rates, H S = 750, medium contact rates. Negative dollars saved 

means more money was spent than saved. Vaccination was extremely cost saving. 
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ention will still reduce cases of Lyme disease, improving public

ealth in the local community. 

This analysis reflects that vaccines can be a cost saving method

hen compared to treatment for Lyme disease but likely only in

reas where mice come into frequent contact with bait boxes, es-

ecially in areas with a high level of human traffic. 

. Discussion 

This study used a coupled mouse ( M S , M I , M V ) and nymphal

ick ( N S , N I ) model to determine whether vaccinating mouse pop-

lations in fragmented forests could reduce the number of Lyme-
nfected ticks there. This model captures both the seasonal dynam-

cs of the mouse-tick interactions and the effects of vaccination on

he persistence of the infection. These characteristics are impor-

ant because an accurate estimate of infection prevalence within

he nymphal stage relates directly to the expected number of hu-

an cases in an area and the cost saving potential of vaccines. 

Analysis showed that vaccination can eliminate local B. burgdor-

eri transmission between mice and ticks at achievable rates and

uration of vaccination. Additionally, we found that the vaccina-

ion rates required to reduce infection prevalence in ticks to 20%

chieved the reduction within two years, whereas the time re-

uired to reach lower prevalences was sensitive to vaccination

ates. Thus infected tick prevalence can be reduced to 20% within

he first two years, but reduction to trace levels would likely take

onger. 

Furthermore, the cost analysis shows that vaccine intervention

s cost saving in specific targeted areas where mice are primary

eservoirs if there is significant human presence in the area, espe-

ially if ticks bite humans frequently there. We believe this could

e a particularly practical measure in fragmented forests near hu-

an settlements like parks or wooded areas in and around subur-

an developments. These environments often have very high infec-

ion prevalence among nymphal ticks, low mammal diversity, and

igh levels of human activity. 

In future research, this model could be adapted to include in-

uence of other control factors. Some promising methods include

hemical or fungal pesticides to cull tick populations, or increas-

ng mammalian biodiversity to allow for predation or for competi-

ion with less competent reservoirs of small mammal hosts. Mod-

ling the pesticide methods could include adding classes of mice

hat are protected by pesticide applied directly to their fur through

ait boxes similar to the ones that deliver the vaccine. Increased

iodiversity might include predator-prey or competition dynamics

ith different species of host having different transmission rates. A

ore detailed cost analysis would also be possible. Incorporating

he effects of tick diapause could improve model accuracy. Lyme

isease is a significant public health problem, and a variety of

athematical models could offer solutions without the need for

xpensive field tests. 
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Appendix A 

A1. Single-event transition equations 

The following table describes the effect of each possible model

event on the relevant populations. Here c is the proportion of the

year for which the particular process takes place. This is not con-

stant for a given compartment transition and depends on the or-

der of events and transitions being divided into multiple events.

Also, M(t) = M I (t) + M V (t) + M S (t) is the total mouse population

at time t , while N(t) = N S (t) + N I (t) counts all tick nymphs at time

t . 

Mouse events 

Event Flow Term in equation 

Mice are born → M S M S (t + 

i +1 
k 

) = c�M + M S (t + 

i 
k 

) 

Mice are 

vaccinated 

M S → M V M S (t + 

i +1 
k 

) = M S (t + 

i 
k 
) e −cψω 

M V (t + 

i +1 
k 

) = M V (t + 

i 
k 
) + M S (t + 

i 
k 
)(1 − e −cψω ) 

Mice die M S → M S (t + 

i +1 
k 

) = M S (t + 

i 
k 
) e −cμ

M I → M I (t + 

i +1 
k 

) = M I (t + 

i 
k 
) e −cμ

M V → M V (t + 

i +1 
k 

) = M V (t + 

i 
k 
) e −cμ

Mice are 

infected 

M S → M I M S (t + 

i +1 
k 

) = M S (t + 

i 
k 
) e 

−cβM 

N I (t+ i 
k 

) 

N(t+ i 
k 

) 

M I (t + 

i +1 
k 

) = M I (t + 

i 
k 
) + M S (t + 

i 
k 
) 

( 

1 − e 
−cβM 

N I (t+ i 
k 

) 

N(t + i 
k 

) 

) 

Tick events 

Event Flow Term in equation 

Ticks die L S → L S (t + 

i +1 
k 

) = L S (t + 

i 
k 
) e −cα

N S → N S (t + 

i +1 
k 

) = N S (t + 

i 
k 
) e −cα

N I → N I (t + 

i +1 
k 

) = N I (t + 

i 
k 
) e −cα

A S → A S (t + 

i +1 
k 

) = A S (t + 

i 
k 
) e −cα

A I → A I (t + 

i +1 
k 

) = A I (t + 

i 
k 
) e −cα

Larvae feed L S → N I N I (t + 

i +1 
k 

) = L S (t + 

i 
k 
) e 

−cβL 

M I (t+ i 
k 

) 

M(t+ i 
k 

) 

L S → N S N S (t + 

i +1 
k 

) = L S (t + 

i 
k 
) 

( 

1 − e 
−cβL 

M I (t+ i 
k 

) 

M(t+ i 
k 

) 

) 

Nymphs feed N I → A I A I (t + 

i +1 
k 

) = N S (t + 

i 
k 
) 

N S → A I A I (t + 

i +1 
k 

) = N S (t + 

i 
k 
) e 

−cβN 

M I (t+ i 
k 

) 

M(t+ i 
k 

) 

N S → A S A S (t + 

i +1 
k 

) = N S (t + 

i 
k 
) 

( 

1 − e 
−cβN 

M I (t+ i 
k 

) 

M(t+ i 
k 

) 

) 

Larvae hatch → L S L S (t + 

i +1 
k 

) = L s (t + 

i 
k 
) + c�T 

A2. Model derivation 

Again let M(t) = M S (t) + M I (t) + M V (t ) and N(t ) = N S (t) +
N I (t) . 

1. Mice are vaccinated 

M S 

(
t + 

1 

11 

)
= M S (t) e −

ψω 
4 
M V 

(
t + 

1 

11 

)
= M V (t) + M S (t)(1 − e −

ψω 
4 ) 

2. Nymphs infect mice 

M S 

(
t + 

2 

11 

)
= M S 

(
t + 

1 

11 

)
e −

βM 
2 

N I (t) 

N(t) 

= M S (t) e −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) 

M I 

(
t + 

2 

11 

)
= M I 

(
t + 

1 

11 

)
+ M S (t + 

1 

11 

) 
(

1 − e −
βM 

2 

N I (t) 

N(t) 

)
= M I (t) + M S (t) e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
3. Susceptible and infected nymphs feed on mice and become in-

fected adults 

A I 

(
t + 

3 

11 

)
= N I 

(
t + 

2 

11 

)
+ N S 

(
t + 

2 

11 

)( 

1 − e 
− βN 

2 

M I ( t+ 2 
11 ) 

M ( t+ 2 
11 ) 

) 

= N I ( t ) + N S ( t ) ⎛ 

⎝ 1 − exp 

⎡ 

⎣ −βN 

2 

M I ( t ) + M S ( t ) e 
− ψω 

4 

(
1 − e −

βM 
2 

N I ( t ) 

N ( t ) 

)
M ( t ) 

⎤ 

⎦ 

⎞
⎠

Susceptible nymphs become susceptible adults 

A S 

(
t + 

3 

11 

)
= N S 

(
t + 

2 

11 

)( 

e 
− βN 

2 

M I ( t+ 2 
11 ) 

M ( t+ 2 
11 ) 

) 

= N S (t) exp 

⎛ 

⎝ −βN 

2 

M I (t) + M S (t) e −
ψω 

4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
M( t) 

⎞ 

⎠ 

4. Mice die 

M S 

(
t + 

4 

11 

)
= M S 

(
t + 

3 

11 

)
e −

μ
4 

= M S (t) e −
μ
4 e −

ψω 
4 e −

βM 
2 

N I (t) 

N(t) 

M I 

(
t + 

4 

11 

)
= M I 

(
t + 

3 

11 

)
e −

μ
4 

= M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
M V 

(
t + 

4 

11 

)
= M V 

(
t + 

3 

11 

)
e −

μ
4 

= M V (t) e −
μ
4 + M S (t) e −

μ
4 

(
1 − e −

ψω 
4 

)
5. Mice are born 

M S 

(
t + 

5 

11 

)
= M S 

(
t + 

4 

11 

)
+ 

�M 

4 

= M S (t) e −
μ
4 e 

−ψω 
4 e −

βM 
2 

N I (t) 

N(t) + 

�M 

4 

6. Larvae hatch 

L S 

(
t + 

6 

11 

)
= L S 

(
t + 

5 

11 

)
+ �T = �T 

7. Larvae die 

L S 

(
t + 

7 

11 

)
= L S 

(
t + 

6 

11 

)
e −

α1 
4 = e −

α1 
4 �T 

8. Larvae feed, possibly get infected, and transition to nymphs 

N S 

(
t + 

8 

11 

)
= L S 

(
t + 

7 

11 

)( 

e 
− βL 

4 

M I ( t+ 7 
11 ) 

M ( t+ 7 
11 ) 

) 

= �T e 
− α1 

4 exp 

⎛ 

⎝ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎞ 

⎠ 
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D
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N I 

(
t + 

8 

11 

)
= L S 

(
t + 

7 

11 

)( 

1 − e 
− βL 

4 

M I ( t+ 7 
11 ) 

M ( t+ 7 
11 ) 

) 

= �T e 
− α1 

4 

×

⎛ 

⎝ 1 − exp 

⎡ 

⎣ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎤ 

⎦ 

⎞ 

⎠ 

9. Nymphs die 

N S 

(
t + 

9 

11 

)
= N S 

(
t + 

8 

11 

)
e −

3 α2 
4 

= �T e 
− (α1 +3 α2 ) 

4 exp 

×

⎛ 

⎝ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎞ 

⎠ 

N I 

(
t + 

9 

11 

)
= N I (t + 

8 

11 

) e −
3 α2 

4 

= �T e 
− (α1 +3 α2 ) 

4 ×

⎛ 

⎝ 1 − exp 

×

⎡ 

⎣ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎤ 

⎦ 

⎞ 

⎠ 

0. Mice die 

M S 

(
t + 

10 

11 

)
= M S 

(
t + 

9 

11 

)
e −

3 μ
4 

= M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 

e −
3 μ
4 

M I 

(
t + 

10 

11 

)
= M I (t) e −μ + M S (t) e −μe −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
M V 

(
t + 

10 

11 

)
= M V (t) e −μ + M S (t) e −μ

(
1 − e −

ψω 
4 

)
1. Mice are born 

M S (t + 1) = M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 

e −
3 μ
4 + 

3�M 

4 

= M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 

(
e −

3 μ
4 + 3 

)
2. Final equations 

N I (t + 1) = �T e 
− (α1 +3 α2 ) 

4 ⎛ 

⎝ 1 − exp 

⎡ 

⎣ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎤ 

⎦ 

⎞ 

⎠ 

N S (t + 1) = �T e 
− (α1 +3 α2 ) 

4 

exp 

⎛ 

⎝ −βL 

4 

M I (t) e −
μ
4 + M S (t) e −

μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
e −

μ
4 M(t) + 

�M 

4 

⎞ 

⎠ 

M S (t + 1) = M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 
(e −

3 μ
4 + 3) 

M I (t + 1) = M I (t) e −μ + M S (t) e −μe −
ψω 

4 

(
1 − e −

βM 
2 

N I (t) 

N(t) 

)
M V (t + 1) = M V (t) e −μ + M S (t) e −μ(1 − e −

ψω 
4 ) 
p  
3. Demographic and disease-free equilibrium values 

1. Total mouse population constant year-to-year 

M(t) = M S (t + 1) + M I (t + 1) + M V (t + 1) 

= M S (t) e −μe −
ψω 

4 e −
βM 

2 

N I (t) 

N(t) + 

�M 

4 

(
e −

3 μ
4 + 3 

)
+ M I (t) e −μ + M S (t) e −μe −

ψω 
4 

(
1 − e 

− βM 
2 

N I (t) 

N S (t)+ N S (t) 

)
+ M V (t) e −μ + M S (t) e −μ

(
1 − e −

ψω 
4 

)
M(t) = e −μ

(
M(t) + 

�m 

4 

e 
μ
4 + 

3 

4 

e μ�M 

)

Equilibrium solution : M(t) = 

�M 

4 

e 
−3 μ

4 + 3 

1 − e −μ

2. Total nymph population constant year-to-year 

N(t) = N S (t + 1) + N I (t + 1) 

= �T e 
− (α1 +3 α2 ) 

4 

⎛ 

⎜ ⎜ ⎜ ⎝ 

e 
− βL 

4 

M I (t) e 
− μ

4 + M S (t) e 
− μ

4 e 
− ψω 

4 

⎛ 
⎝ 1 −e 

− βM 
2 

N I (t) 

N(t) 

⎞ 
⎠ 

e 
− μ

4 [ M I (t)+ M S (t)+ M V (t)]+ �M 
4 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ �T e 
− (α1 +3 α2 ) 

4 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 − e 
− βL 

4 

M I (t) e 
− μ

4 + M S (t) e 
− μ

4 e 
− ψω 

4 

⎛ 
⎝ 1 −e 

− βM 
2 

N I (t) 

N(t) 

⎞ 
⎠ 

e 
− μ

4 [ M I (t)+ M S (t)+ M V (t)]+ �M 
4 

⎞
⎟⎟⎟⎠

= �T e 
− (α1 +3 α2 ) 

4 

3. Disease-free equilibrium with vaccination 

N I (t) = 0 

N S (t) = �T e 
− (α1 +3 α2 ) 

4 

M I (t) = 0 

M S (t) = 

�M 

4 

(
e 

−3 μ
4 + 3 

)
(

1 − e −μ− ψω 
4 

)

M V (t) = 

�M 

4 

(
e 

μ
4 + 3 e μ

)(
1 − e 

ψω 
4 

)
( −1 + e μ) 

(
−1 + e μ+ ψω 

4 

)
without vaccination 

N I (t) = 0 

N S (t) = �T e 
− (α1 +3 α2 ) 

4 

M I (t) = 0 

M S (t) = 

�M 

4 

(
e 

−3 μ
4 + 3 

)
( 1 − e −μ) 

M V (t) = 0 

4. Derivation of R C 

We begin by decomposing the Jacobian matrix evaluated at the

FE as follows: 

J = 

[
F + T O 

A C 

]
here F + T is the 2 × 2 submatrix relating the N I and M I com-

artments, O is the 2 × 1 zero matrix, A is a 1 × 2 matrix, and
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C is the 1 × 1 matrix 

[ 
e −μ− ψω 

4 

] 
. F consists of all terms relating

to new infections and T consists of all other terms in each matrix

entry: 

F = 

⎡ 

⎢ ⎣ 

βM βL 

8 
(3 e 

− μ
4 + e −μ) e −

ψω 
4 

(1 −e 
−μ− ψω 

4 ) 

( 1 −e −μ) 

( 1+3 e −μ/ 4 ) 
e −μ e 

− (α1 +3 α2 ) 
4 ( 1 −e −μ) βL �T 

( 3 e −μ+ e −3 μ/ 4 ) �M 

βM �M 

8�T 

(3 e 
− μ

4 + e −μ) e −
3 μ
4 

− ψω 
4 

(1 −e 
−μ− ψω 

4 ) e −
(α1 +3 α2 ) 

4 

0 

⎤ 

⎥ ⎦ 

and T = e −μ
(0 0 

0 1 

)
. 

As with the full Jacobian, the matrix F + T is singular as well.

Let F = 

(ka kb 

a 0 

)
and T = 

(0 0 

0 b 

)
. We can use these matrices to

calculate the next-generation matrix Q and an expression for R C . 

Q = F (I 2 ×2 − T ) −1 = 

[
ka kb 

1 −b 

a 0 

]
with eigenvalues 

λ1 , 2 = 

{ 

1 

2 

( 

ka ±
√ 

(ka ) 2 + 

4(ka ) b 

1 − b 

) } 

, 

so that 

R C = 

1 

2 

( 

ka + 

√ 

(ka ) 2 + 

4(ka ) b 

1 − b 

) 

;

since, from (4) , ka = r(1 − e −μ) , this simplifies to 

R C = 

1 

2 

(
r(1 − e −μ) + 

√ 

r 2 (1 − e −μ) 2 + 4 re −μ

)
. 

Since e −μ− ψω 
4 , the spectral radius of C , is always between 0 and 1,

R C provides a stability condition for the disease-free equilibrium.

If R C < 1 , the equilibrium is stable. Otherwise, it is unstable. 

A5. Derivation of equilibrium condition 

The equilibrium versions of system (3) are as follows: 

M 

∗
I = M 

∗
I e 

−μ + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

−μe −
ψω 

4 

(
1 − e −

βM 
2 

N ∗
I 

N ∞ 

)
M 

∗
V = M 

∗
V e 

−μ + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

−μ(1 − e −
ψω 

4 ) 

N 

∗
I = N ∞ ⎛ 

⎝ 1 − exp 

⎡ 

⎣ −βL 

4 

M 

∗
I e 

− μ
4 + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

− μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N ∗
I 

N ∞ 

)
e −

μ
4 M ∞ 

+ 

�M 

4 

⎤ 

⎦ 

⎞
⎠

Solving the second equation for M 

∗
V 

in terms of M 

∗
I 
. 

M 

∗
V = M 

∗
V e 

−μ + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

−μ(1 − e −
ψω 

4 ) 

M 

∗
V (M 

∗
I ) = 

(
−1 + e 

ψω 
4 

)
(M ∞ 

− M 

∗
I ) (

−1 + e μ+ ψω 
4 

)
Solving the first equation for M 

∗
I 

in terms of N 

∗
I 

. 

M 

∗
I = M 

∗
I e 

−μ + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

−μe −
ψω 

4 

(
1 − e −

βM 
2 

N ∗
I 

N ∞ 

)

M 

∗
I (N 

∗
I ) = 

1 − e −
βM 

2 

N ∗
I 

N ∞ 

e μ+ ψω 
4 − e −

βM 
2 

N ∗
I 

N ∞ 

M ∞ 

Solving the third equation in terms of N 

∗
I 

. 

N 

∗
I = N ∞ ⎛ 

⎝ 1 − exp 

⎡ 

⎣ −βL 

4 

M 

∗
I e 

− μ
4 + (M ∞ 

− M 

∗
V − M 

∗
I ) e 

− μ
4 e −

ψω 
4 

(
1 − e −

βM 
2 

N ∗
I 

N ∞ 

)
e −

μ
4 M ∞ 

+ 

�M 

4 

⎤ 

⎦ 

⎞ 

⎠ 
 

(
N 

∗
I 

N ∞ 

)
= ln 

(
1 − N 

∗
I 

N ∞ 

)
+ 

βL M ∞ 

e 
−μ

4 e −
ψω 

4 

4 
(
e 

−μ
4 M ∞ 

+ 

�M 

4 

)
( 

1 − e 
−βM 

2 

N ∗
I 

N ∞ 

1 − e −μe 
−ψω 

4 e 
−βM 

2 

N ∗
I 

N ∞ 

) 

= 0 

Local stability analysis for the endemic equilibrium using the Ja-

obian matrix finds that one eigenvalue is zero (as for the disease-

ree equilibrium), with the other two given by an equation of

he form λ2 + a 1 λ + a 2 = 0 . Thus by the Jury criterion, the en-

emic equilibrium is locally asymptotically stable if and only if

 a 1 | < a 2 + 1 < 2 . In terms of the model parameters, this becomes 

r(1 − n ) 
w 

n (1 − y 4 )(1 − y 4 z) 

1 − y 4 zw 

n 
+ y 4 (1 + zw 

n ) 

< r(1 − n ) 
y 4 zw 

n (1 − y 4 )(1 − y 4 z) 

1 − y 4 zw 

n 
+ y 8 zw 

n + 1 < 2 , 

here n = N 

∗
I 
/N obeys G (n ) = 0 as in (6) , w = e −βM / 2 , y = e −μ/ 4 ,

 = e −ψω/ 4 , and r is as given in Eq. (4) . Solving (6) for r and sub-

tituting, the two inequalities simplify to 

f (n ) < 

1 − y 4 zw 

n 

1 − y 4 z 
, f (n ) < 

1 − y 8 zw 

n 

y 4 z(1 − y 4 ) 
, 

where f (n ) = −βM 

2 

(1 − n ) ln (1 − n ) 
w 

n 

1 − w 

n 
. 

ne can show that 0 ≤ f ( n ) ≤ 1 for 0 ≤ n ≤ 1, 0 < w < 1, with

 monotone decreasing in n , f (0) = 1 , f (1) = 0 for all w ∈ (0, 1).

eanwhile, the fractions on the right-hand sides of both inequal-

ties are greater than 1 (since w, y, z < 1). Thus the Jury criterion

s satisfied whenever the endemic equilibrium exists. 

6. Parameter estimation 

• Calculation of α1 , α2 , α3 : Using data from literature, we used

survival proportions of 0.05, 0.1, and 0.2 between each stage of

the tick life cycle ( Randolph, 1998 ) and calculated the α values

based on the proportions of death that we considered in our

model. 

α1 : Egg to larva 

e −
α1 
4 = 0 . 05 

−α1 

4 

= ln (0 . 05) 

α1 = −4 ln (0 . 05) 

= 11 . 98 /yr 

α2 : Larva to nymph 

e −
3 α2 

4 = . 1 

α2 = −4 

3 

ln (0 . 1) 

= 3 . 07 /yr 

α3 : Nymph to adult 

e −
α3 
2 = 0 . 2 

α3 = 2 ln (0 . 2) 

= 3 . 22 /yr 

• Calculation of μ: From literature, we found that the natural

death rate of mice was 0.012/day. Thus, we multiplied by 365

to obtain the yearly value of 4.38/year. 
• Calculation of �M 

: Using M ( t ) from our equilibrium solution in

Appendix A.3 and the chosen value for the total mice popula-

tion M ( t ) = 50, along with μ = 4.38/yr, we have 

50 = 

�M 

4 

e 
−3(4 . 38) 

4 + 3 

1 − e −4 . 38 

and thus � = 65.02. 
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• Calculation of �T : Using N ( t ) from our equilibrium solution in

Appendix A.3 and the chosen value for the total nymph popu-

lation N(t) = 10 0 0 , along with α1 = 11 . 98 /yr and α2 = 3 . 07 /yr,

we have 

10 0 0 = �T e 
− (11 . 98+3 ·3 . 07) 

4 

and thus �T = 1.998 x 10 5 . 
• Estimation of ω: We obtained this value from a study that eval-

uated vaccines in mice, specifically ones that included the same

surface protein that we looked into for this study and cor-

responded with the field trial that we referenced throughout

( Richer et al., 2014; Schwendinger et al., 2013 ). Though the pa-

per had multiple values for effectiveness, we used the ω that

corresponded to 100 ng vaccine; this value was presented as a

proportion and thus no conversion of units was needed. 
• Calculation of x : The cost of increasing the vaccination rate by

1/day, is estimated by analysis of field data from a vaccine field

trial ( Richer et al., 2014 ). The following data points were used. 

1. White-Footed mouse captures 

We took data from Table 1: Number of White-Foot Mouse

(WFM) Captures in the Field, recreated below. 

Study Year Unique 

WFM 

Captured 

Nights of 

Trap Use 

Total WFM 

Captures 

WFM 

Trapability 

2007 700 9472 6043 8.63 

2008 240 13,824 1647 6.86 

2009 716 26,112 5399 7.75 

2010 877 27,136 3806 4.83 

2011 1258 24,064 6078 4.83 

Overall 3791 100,608 22,973 6.48 

2. Plots per year 

The field trial also used 64 traps per 1.1 hectare plot for

distributing vaccines or as controls and used the following

number of plots every year. 

Year 2007 2008 2009 2010 2011 

Plots Used 4 5 7 7 7 

Using this data we construct the following equation for bait-

box contact rate in a year. Due to the high average captures

per mouse we assume that the unique number of mice cap-

tured provides a good estimate to the number of mice in all

the plots. 

B (t) = 

Total WFM Captures 

Nights of Trap Use 
∗ 64 

Numb er of Plots Used 

Unique WFM Captured 

We average B ( t ) across the five study years to obtain B Mean =
. 1366 per day. The study achieved successful vaccination

in a mouse after approximately 5 captures so we esti-

mate the study’s vaccination rate, ψ = 

B Mean 
5 = 0.02732/day =

9.9718/year. We assume the cost of a bait box distributing vac-

cine to be equal to a bait box distributing acaricide which are

on average priced at $50 per box per year ( Interlandi, 2018 ).

The cost to vaccinate 1.1 hectares at a rate ψ = 9 . 9718 /yr is cal-

culated by $50 ∗64 
year = 

$3200 
year . We then solve for x : 

C Vaccination = x ∗ ψ 

3200 = x · 9 . 718 

x = $329 . 29 . 

• Calculation of θ : Using values from a study on health care costs

of Lyme disease, including Post-Treatment Lyme Disease Syn-

drome (PTLDS), we used the following equation ( Adrion et al.,

2015 ): 

θ = 

health care costs 
for an acute case of Lyme disease 
+ 

probability of 
developing PTLDS 

∗ average yearly 
cost of PTLDS 

= $2968 + 0 . 15($3798) 

= $3537 . 70 

The probability of 0.15 was taken from the same source as an

average of the range of probabilities of developing PTLDS (10%-

20%). 
• Calculation of ρ: The source cites the probability of Lyme dis-

ease after a tick bite to be from 0.012 to 0.05 ( Magid et al.,

1992 ). The center of this range gives 0.031 for our ρ value. 
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