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Constructing computational fluid dynamics (CFD) simulations from experimental data
is a critical process in aerospace engineering design, but sparsity and errors in local sensors
limits the ability to condition CFD results with experimental data. These limitations often
lead to different measurements of critical quantities in experimental and computational results.
Neural networks can quantify nonlinear relationships between sparse or integrated sensor data
and the corresponding flow-field, potentially increasing the accuracy of other CFD methods by
conditioning them on initial estimates of flow-fields produced by neural networks. However,
accuracy of this method requires investigating optimal placement of sensors and sensitivity
analysis of network reconstructions. In this work, we investigate the sensitivity of a shallow
encoder network CFD reconstruction to the location and readings of sensors using Morris
screening and network sensitivity methods. The resulting analysis facilitates the determination
of flow-field regions where increased precision in sensor readings or placements most effects
reconstruction accuracy.

I. Background and Motivation

With improvements in the accuracy and efficiency of computational fluid dynamics (CFD), using CFD results
to compute flow-fields using experimental sensor data has become a critical step in aerospace applications of

engineering design. Sensor readings from experimental data are often used to condition CFD results, which can compute
the flow-field as a function of space and time, though limited to discretizations in both. However, limitations of physical
sensors present numerous complications for computing velocity flow and pressure characteristics directly from sensor
data. First, sensors are often limited to integrated forces and moments, supplemented by sparse velocity, pressure, or
temperature sensors. Additionally, sensors can have errors in their readings, which further limits the accuracy of CFD
results. As a result of these limitations, experimental and CFD results often fail to align on critical quantities such as lift
and drag coefficients [1].

Neural networks present a possible intermediate reduced-order model (ROM) to efficiently expand sensor data into
flow-field data with which CFD results can be better constrained. Neural network approximations of flows have already
been used to accurately predict flow-fields by quantifying nonlinear relationships between the flow-field and sparse or
integrated sensor data [2]. Neural network approximations may not match boundary conditions or underlying equations.
However, CFD methods can effectively enforce physical limitations of the flow-field with improved accuracy from
network approximation-based constraints on the entire flow-field. Therefore, we employ neural networks to efficiently
approximate velocity of compressible Navier-Stokes flows directly from sensor data, which can greatly improve the
accuracy of other CFD methods.
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Informing high-fidelity CFD approximations with a network approximation requires determining the optimal location
of sensors to maximize accuracy of reconstructions and minimize sensitivity to error in sensor readings. A common
method to select optimal measurements under uncertainty is optimizing the mutual information [3]. Mutual information
methods can be used to select sensor locations iteratively so that the reading of each sensor minimizes the uncertainty in
predicted outputs given the previously placed sensors and uncertainty in their readings [4, 5]. However, computing
the mutual information metric requires integrating over the uncertainty in each output and sensor reading along with
optimizing the sensor placement [5]. This approach is computationally intractable for our application due to the high
dimension of our output space, the number of discrete points in each snapshot, and the potentially long time required to
retrain the networks for each sensor position when optimizing the mutual information. Therefore, we instead utilize
sensitivity analysis to determine regions of a flow for which reconstructions are most sensitive to the sensor data or
placement.

Sensitivity analysis quantifies how uncertainty in model outputs is apportioned to uncertainty in model parameters.
Parameters with high sensitivity require more precise measurement or can be optimized to improve performance whereas
parameters with low sensitivity can potentially be fixed to develop reduced-order models [6]. In this paper, we quantify
the sensitivity of the network flow-field reconstructions to both the location and data of sensors placed using the leverage
score method [7].

To quantify sensitivity to sensor location, we use the quasi-global method of Morris screening [8]. Morris
screening approximates the local partial derivatives of output quantities with respect to each parameter and averages the
approximations over an assumed distribution of parameter values. Morris screening provides less information than
the total variance of Sobol analysis, a common global sensitivity analysis method, but requires significantly fewer
function evaluations and is less affected by error in assumed parameter distributions [9]. To determine the sensitivity of
sensor values, we use a network sensitivity method which globally averages the partial derivatives of network outputs to
network inputs [10]. Network sensitivity approximation has similar sensitivity indices as Morris screening, but instead
samples over the set of sensor readings from each snapshot and uses back-propagation to more efficiently and accurately
compute partial derivatives.

In this paper, we detail the structure, training, and sensor placement methods for network reconstructions of
fluid-flows. We then review the network sensitivity and Morris screening methods used to compute the sensitivity of
reconstructions to sensor data and location respectively. Next, we present the regularized lid-driven cavity we use to test
the sensor sensitivity methods. We then measure the sensitivity of reconstruction error to sensor location and data to
determine optimal placement of additional sensors. We intend as future work extension of this method to determine
optimal sensor placement for predicting flow-fields around an Orion lander.

II. Methodology

A. Network Design and Sensor Placement
To calculate the flow-field y ∈ R𝑚, where 𝑚 is the size of the full flow-field, from a set of sensor measurements

x ∈ R𝑝, where 𝑝 is the number of sensor locations, we implement a shallow encoder network. Using a rank-k
approximation, we assume that a field can be approximated using

y ≈ ŷ =

𝑘∑︁
𝑗=1

𝝓 𝑗𝜈 𝑗 = Φ𝝂 , (1)

where 𝝓 𝑗 ∈ R𝑚 are the modes of the approximation and 𝜈 𝑗 ∈ R are the coefficients [11] . Given the set of approximation
modes Φ ∈ R𝑚×𝑘 , we may estimate the flow-field y by learning the coefficients 𝜈 from the sensor observations, x. A
fully connected neural network with 𝑙 layers is defined as [11]

𝐹 (𝑥; {W𝑖}𝑙𝑖=1) = 𝑅(W𝑙𝑅(W𝑙−1 · · · 𝑅(W1𝑥))) , (2)

where 𝑅 : R → R is a coordinate-wise scalar nonlinear activation function and
{
W 𝑗

}𝑙
𝑗=1 is a set of weight matrices, one

for each layer. Given a training set {x𝑖 , y𝑖}𝑛𝑖=1 with 𝑛 samples of flow-field y𝑖 and corresponding sensor measurements
x𝑖 , the training of a shallow encoder network estimates a set of weight matrices such that 𝐹 : 𝑥 ↦→ 𝑦̂ minimizes the error
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in Euclidean flow space over all sensor measurements,

argmin
𝐹

𝑘∑︁
𝑖=1

∥y𝑖 − 𝐹 (x𝑖)∥2
2 . (3)

Following Erichson [12], a shallow encoder can conceptually be mapped to a Proper orthogonal decomposition (POD)
methodology as outlined in 1. This conceptual mapping involves three components. The first component is a network
layer that maps from the input sensor measurements to a larger dimensional space, which conceptually corresponds to
a non-linear feature extraction layer, 𝑧𝜓 = 𝜓(x) = 𝑅(W𝜓x + 𝑏𝜓). The second component conceptually maps so the
coefficients of the POD approximation, 𝑧𝜈𝑠 = 𝜈(𝑧𝜙) = 𝑅(W𝜈𝑧

𝜙 + b𝜈). Finally, the third component maps to the full
flow-field approximation including estimation of the modes of the POD approximation, ŷ = W𝜙𝑧

𝜈 + b𝜙. Thus, the
columns of the weight matrix W𝜙 conceptually correspond to the dominant modes of the approximation; i.e., similar to
Φ in 1.

Sensor positions from CFD data are randomly sampled using leverage score sampling [7, 13]. Leverage scores for
the 𝑖𝑡ℎ sensor location are computed using

𝑙𝑖 =

𝑛∑︁
𝑗=1

V2
𝑖, 𝑗 , (4)

where 𝑛 is equal to the number of training samples and V ∈ R𝑛×𝑝 is the right singular vector matrix obtained from the
singular vector decomposition of the matrix of training data samples. Sensors are selected without replacement and
with probability proportional to their leverage score.

B. Morris Screening
To compute the sensitivity of network approximations to sensor placement, we use Morris screening. Morris

screening is a one-at-a-time (OAT) quasi-global sensitivity analysis method, which approximates the local derivatives
using finite-differences at parameter values sampled from assumed distributions [8]. Morris screening’s primary
sensitivity indices calculate the mean 𝜇𝑖𝑘 , absolute mean 𝜇∗

𝑖𝑘
, and standard deviation 𝜎𝑖𝑘 of sensitivity for the 𝑖𝑡ℎ

parameter and 𝑘 𝑡ℎ model output 𝑓𝑘 . Formulae for Morris screening indices of 𝑓𝑘 are given by

𝑑
𝑗

𝑖𝑘
=

𝑓𝑘 (𝜉, 𝜃 𝑗 + Δ𝑒𝑖) − 𝑓𝑘 (𝜉, 𝜃 𝑗 )
Δ

, 𝜇𝑖𝑘 =
1
𝑁

𝑁∑︁
𝑗=1

𝑑
𝑗

𝑖𝑘
, 𝜇∗𝑖𝑘 =

1
𝑁

𝑁∑︁
𝑗=1

|𝑑 𝑗

𝑖𝑘
| , 𝜎𝑖𝑘 =

√√√
1

𝑁 − 1

𝑁∑︁
𝑗=1

(𝑑 𝑗

𝑖𝑘
− 𝜇𝑖𝑘)2, (5)

for a parameter 𝑖 with 𝑁 parameter samples, a step-size of Δ, and unit vector 𝑒𝑖 for parameter 𝑖. The step-size determines
how finely the parameter space is searched around each parameter sample 𝜃 𝑗 , where very small values provide a
finite-difference derivative approximation whereas large values quantify large-scale function variations [6]. For the
results presented in this paper, we utilized a step-size of Δ = 10−3. To improve accuracy of Morris screening, we
uniformly sample parameters with quasi-random Sobol samples [14].

The absolute mean, 𝜇∗
𝑖𝑘

quantifies the sensitivity magnitude, where parameters with larger 𝜇∗
𝑖𝑘

have a larger
magnitude of partial derivative. The absolute mean is used to quantify sensitivity instead of the mean sensitivity since
the mean sensitivity can be small or zero for highly sensitive parameters if they have a nonlinear effects on quantities
due to cancellation of opposite signs in partial derivatives. It provides a similar measurement as total variance from
Sobol analysis, but Sobol analysis is more computationally expensive, more impacted by error in assumed parameter
distributions, and assumes parameters are independently distributed for standard implementations [6]. The indices
𝜎𝑖𝑘 quantify the standard deviation of the sensitivity which identifies parameters that may have nonlinear effects on a
quantity or may only be highly sensitive on a limited region of their assumed distribution [9].

C. Network data sensitivity
We perform sensitivity analysis of the network approximation with respect to sensor data using the partial derivatives

method outlined by Pizarroso, et al [10]. This method utilizes back-propagation to directly compute partial derivatives
of network outputs to network inputs and averages these derivatives over sample data. We define the following sensitivity
indices,
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𝑠𝑖𝑘 𝑗 =
𝜕𝑦𝑘

𝜕𝑥𝑖
(𝑥 𝑗 ), 𝑆

𝑎𝑣𝑔

𝑖𝑘
=

1
𝑁

𝑁∑︁
𝑗=1

𝑠𝑖𝑘 𝑗 , 𝑆𝑎𝑏𝑠𝑖𝑘 =
1
𝑁

𝑁∑︁
𝑗=1

��𝑠𝑖𝑘 𝑗 �� , 𝑆𝑠𝑑𝑖𝑘 =

√√√
1

𝑁 − 1

𝑁∑︁
𝑗=1

(𝑆𝑎𝑣𝑔
𝑖𝑘

− 𝑠𝑖𝑘 𝑗 )2, (6)

where 𝑁 is the total number of data samples, 𝑥 𝑗 is the 𝑗 sample of the dataset, and 𝑠𝑖𝑘 𝑗 is the sensitivity of the output of
the 𝑘-th neuron in the output layer with respect to the input of the 𝑖-th neuron in the input layer calculated at 𝑥 𝑗 . We
note that the network sensitivity indices 𝑆𝑎𝑣𝑔

𝑖𝑘
, 𝑆𝑎𝑏𝑠

𝑖𝑘
, and 𝑆𝑠𝑑

𝑖𝑘
correspond to the Morris screening indices 𝜇𝑖 , 𝜇∗𝑖 , and

𝜎𝑖 defined in Section II.B, although the sensitivity sampling strategies differ. Network sensitivity traditionally uses
𝑆
𝑠𝑞

𝑖𝑘
, which is the square root of the mean of squares of sensitivity, but we use 𝑆𝑎𝑏𝑠

𝑖𝑘
for sensitivity magnitude to better

correspondence to 𝜇∗ in Morris screening. Similarly to 𝜎∗ in Morris screening, we use 𝑆𝑠𝑑
𝑖𝑘

to identify sensors that
have nonlinear effects on flow-field reconstructions or have large variation in sensitivity between data samples. The
package neuralsens provides Python and R implementation of network sensitivity with exact computation of partial
derivatives. However, computation of Jacobians for each network layer can be computationally expensive for large
networks [10]. Therefore, we instead use a finite-difference approximation to compute 𝑠𝑖𝑘 𝑗 using a perturbation distance
of Δ = 10−5.

D. Lid-Driven Cavity Test Case
We employ an incompressible regularized lid-driven cavity model to test sensitivity analysis of network approxima-

tions of fluid flows. Lid-driven cavities are rectangular domains with homogeneous Dirichlet boundary conditions on
three walls and a non-homogeneous Dirichlet boundary condition parallel to the fourth wall [15]. In the regularized
case, the non-homogeneous boundary condition is a smooth non-negative definite function that converges to zero at the
edges of the boundary [16].

For snapshot data, we use regularized lid-driven cavity snapshots computed via direct numerical simulation (DNS)
at a discretization level of 130 × 130 points and at 𝑅𝑒 = 15, 500 and 𝑅𝑒 = 30, 000 [17, 18]. We train the network with
25 x-velocity sensors placed using leverage score sampling described in Section II.A and predict the x-velocity at
every cell in the snapshot. We compute the error of a network as the mean square error between reconstructed flow
space and the source data. The trained networks with initial sensor positions have a relative testing error of 0.0862 for
𝑅𝑒 = 15, 500 and 0.0898 for 𝑅𝑒 = 30, 000.

When perturbing sensor positions in Morris screening, we uniformly sample the x-position and y-position of each
sensor within ±0.1 of the initial sensor position. We then compute the Morris sensitivity indices of the network relative
error to sensor perturbation in 𝑥 and 𝑦. Since available sensor data is limited to the DNS discretization, we approximate
the sensor values at any point in the domain with a linear-spline interpolant of the snapshot data. For sensitivity to sensor
data, we compute the sensitivities 𝑠𝑖𝑘 𝑗 for each snapshot in the dataset, then compute the corresponding sensitivity
indices according to Equation 6. For results present in this paper, we show the total placement sensitivity indices defined
as the square root of the sum of squares of the corresponding x and y sensitivity indices. For both Morris screening and
network sensitivity, we scale the sensitivity by the magnitude of the maximum perturbation distance and sensor reading
respectively so that the sensitivity to sensor location and data have the same units.

III. Results and Discussion
We use a lid-driven cavity to test the sensitivity of flow reconstruction error to sensor location using Morris screening

and sensor data using network sensitivity. Figure 1 shows the means of absolute sensitivity of relative testing error with
respect to sensor location (𝜇∗) and data (𝑆𝑎𝑏𝑠) for 𝑅𝑒 = 30, 000. We first note that the error of the network is orders of
magnitude more sensitive to the location of the sensors than their sensor readings. Additionally, the error is sensitive to
the location of all sensors, with the lowest sensitivity to sensor location being over 60% of the largest sensitivity, even
though the error has near zero sensitivity to the data for many sensors. Therefore we conclude that the fluid-flow is
approximated primarily using data from the right-side of the flow, but that alternate sensor positions for other regions
can be informative. We next note that the error is highly sensitive to the location of sensors in the center-left-side of the
flow but has near zero sensitivity to the data of those sensors at their initial location. Therefore, we determine this as an
optimal region to place additional sensors, since the high placement sensitivity shows data in this region can influence
accuracy of the network approximation, but none of the data measured by the existing sensors is weighted highly by the
network.
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Fig. 1 𝑅𝑒 = 30, 000 flow reconstruction total absolute sensitivity absolute mean to (a) sensor location and (b)
sensor data. X-velocity contours for the first snapshots of DNS data are shown behind sensor sensitivities.

Figure 2 shows the standard deviations of sensitivity of relative testing error to sensor location (𝜎∗) and data (𝑆𝑠𝑑)
for 𝑅𝑒 = 30, 000. We first observe that sensors with higher magnitude of sensitivity also have higher standard deviations
of sensitivity for both location and data. Additionally, the standard deviations of sensitivity for both location and data
are larger than the magnitudes of sensitivity for nearly all sensors. The large standard deviations are primarily due
to perturbations of both location and data increasing or decreasing error at different parameter sets, causing a mean
sensitivity of approximately zero. We note that no sensors for 𝑅𝑒 = 30, 000 have a low magnitude of sensitivity but
high standard deviation of sensitivity which may further influence the optimal placement of additional sensors.

Figure 3 shows the means of absolute sensitivity of relative testing error with respect to sensor location (𝜇∗) and data
(𝑆𝑎𝑏𝑠) for 𝑅𝑒 = 15, 500. Similarly to 𝑅𝑒 = 30, 000, network error is more sensitive to sensor location than data and has
significant sensitivity to the location of all sensors but the data of only a few sensors. For 𝑅𝑒 = 15, 500 the sensors
with high data sensitivity are clustered in the bottom-right of the flow, indicating the reconstruction is approximated
primarily from data in this region. However, sensors in the top-left corner of the flow have high location sensitivity
but near-zero data sensitivity. Therefore, we anticipate an additional sensor in this region would be optimal to reduce
reconstruction error.

Figure 4 shows the standard deviations of sensitivity of relative testing error to sensor location (𝜎∗) and data (𝑆𝑠𝑑) for
𝑅𝑒 = 15, 000. Similarly to 𝑅𝑒 = 30, 000, sensors with higher magnitude of sensitivity also tend to have higher standard
deviations of sensitivity and the standard deviations of sensitivity are larger than the magnitudes of sensitivity for nearly
all sensors. However, the sensor at approximately (𝑥, 𝑦) = (−1, .6) is a notable exception for location sensitivity. The
sensor has a moderate magnitude of sensitivity but the largest standard deviation of sensitivity, indicating that some
sensor locations in that region, likely closer to the main rotational flow, have a large effect on the reconstruction error.
Since that same sensor has low data sensitivity, this further supports our identification that near the top-left corner is
optimal for additional sensor placement.

IV. Conclusion
Reconstructing flow-fields of physical experiments with computational fluid dynamics (CFD) has become a critical

step in aerospace applications of engineering design. However, sensors often measure integrated forces and moments or
sparsely measure local quantities such as velocity, limiting the accuracy of corresponding CFD results. Neural network
approximations of fluid flows provide a low-cost reduced-order model directly computable from sensor data which can
focus higher fidelity CFD methods and can improve the accuracy of those methods by greatly expanding the available
data used for conditioning. However, understanding the variability of network approximations with respect to sensor
location and error is a critical step for determining both how to improve implementation and where error in sensor
readings will most impact reconstruction accuracy.

In this paper, we employ Morris screening and network sensitivity analysis methods to determine where in a fluid
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(b) Data Sensitivity

Fig. 2 𝑅𝑒 = 30, 000 flow reconstruction total absolute sensitivity standard deviation to (a) sensor location and
(b) sensor data. X-velocity contours for the first snapshots of DNS data are shown behind sensor sensitivities.
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(b) Data Sensitivity

Fig. 3 𝑅𝑒 = 15, 500 flow reconstruction total sensitivity absolute mean to (a) sensor location and (b) sensor data.
X-velocity contours for the first snapshots of DNS data are shown behind sensor sensitivities.

6



1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0
y

1.2

1.3

1.4

1.5

1.6

1.7

(a) Location Sensitivity

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

0.0005

0.0010

0.0015

0.0020

0.0025

Ssd

(b) Data Sensitivity

Fig. 4 𝑅𝑒 = 15, 500 flow reconstruction total sensitivity standard deviation to (a) sensor location and (b) sensor
data. X-velocity contours for the first snapshots of DNS data are shown behind sensor sensitivities.

flow a network reconstruction is most sensitive to the location and data of sensors. Areas where sensors have high
sensitivity to location but low sensitivity to data may require greater fidelity by adding more sensors while areas with
high sensitivity to data may require improving the accuracy of senors. We use this method as an alternative approach
to commonly used mutual information methods which determine optimal sensor placement under uncertainty but are
computationally intractable for our approach.

We computed the sensitivity of reconstruction error to sensor location and data on a lid-driven cavity test problem at
𝑅𝑒 = 15, 500 and 𝑅𝑒 = 30, 000. We found significant sensitivity to location for all sensors, thus indicating that there
are not regions in the test problem where perturbation of sensors does not affect network accuracy. However, at both
Reynolds numbers, nearly all sensors with high data sensitivity were clustered in a single region of the domain. This
shows that the network approximation is reconstructing the entire fluid-flow primarily from variations in sensor data of
a single subset of the flow. We determined that the optimal locations for additional sensors would be in the center-right
of the cavity for 𝑅𝑒 = 30, 0000 and top-left of the cavity for 𝑅𝑒 = 15, 5000 since nearby sensors have high sensitivity to
location but near-zero sensitivity to data, indicating that nearby locations better inform flow-field reconstruction.

Sensitivity analysis provides an effective method to determine locations for additional sensors where other methods
such as mutual information metrics are computationally intractable. For future work, we intend to extend this method
to more complex flows around an Orion Lander. Network approximations can be trained directly on the integrated
forces and moments and sparse velocity, pressure, and temperature sensors that are used in wind-tunnel experiments,
allowing estimation of fluid-flows direct from experimental data to better condition high-fidelity CFD approximations.
Sensitivity analysis of those network approximations could determine where to put additional sensors in wind-tunnel
experiments to produce more accurate high-fidelity CFD approximations.
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