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Sensitivity analysis for computational fluid dynamics (CFD) simulations is a complicated
procedure, which still relies, in many cases, on engineering judgment and factors of safety.
This is in part because the computational cost of quantifying the simulation’s sensitivity to all
meaningful parameters (e.g., body surface roughness) and hyperparameters (e.g., subiteration
convergence criterion) is intractable for even a single simulation. Reduced-order modeling
dramatically lowers this computational cost of simulating fluid flows, but usually only where
similar data are already available. In this work, fluid reduced-order models are utilized to
quantify flow sensitivity to certain physical parameters for the purposes of improved sensitivity
analysis. Characteristic observability and sensitivity are both explored. The sensitivity results
enable more informed CFD frameworks and more rigorous uncertainty bounds on the resulting
data.

I. Nomenclature

𝑎 = proper orthogonal decomposition coefficient
𝑏 = boundary penalty term
𝐵 = boundary penalty term integrated matrix
𝐶 = reduced-order model constant vector
𝑑 = Morris screening function sensitivity
𝐸𝑘 = integrated kinetic energy
ℓ = relative length of the maximum function axis
𝐿 = reduced-order model linear matrix
𝑀 = reduced-order model mass matrix
𝑃 = fluid static pressure
𝑄 = reduced-order model nonlinear matrix
R = the real number space
𝑅𝑒 = Reynolds number
𝑆 = physical system dimension
𝑡 = time
𝑢 = fluid velocity vector
𝑣̄ = velocity magnitude
𝑉 = integrated vorticity
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𝑊 = quadrature weights
x = position vector of dimension 𝑆
𝛼 = lid cavity velocity boundary coefficient
Δ = parametric step size
Γ = fluid domain boundary
𝜃 = parameter sample
𝜙 = proper orthogonal decomposition mode
Φ = complete modal matrix
𝜇 = Morris sensitivity mean
𝜇∗ = Morris sensitivity absolute mean
𝜎 = Morris sensitivity standard deviation
𝜅 = boundary penalty strength
𝜉 = mean-reduction basis function location
Υ = boundary penalty restriction term
𝜔 = vorticity
Ω = fluid domain
BP-POD-ROM = Boundary-Penalized POD-based ROM
CFD = Conputational Fluid Dynamics
EDL = Entry, Descent and Landing
MLUQ = Machine Learning with Embedded Uncertainty Quantification
POD = Proper Orthogonal Decomposition
ROM = Reduced-order Model

II. Background and Motivation

Planetary entry, descent, and landing (EDL) is a necessary and challenging component of many space missions.
To survive the extreme aerodynamic environments induced in these mission stages, as well as touch down within as

small a landing ellipse as possible, vehicles must be designed with rigorous tolerances and operate within a carefully
limited trajectory window. As future landers and their atmospheric trajectories depart further from existing, flight-tested
missions, high-fidelity preflight uncertainty quantification and sensitivity analysis becomes increasingly necessary for
mission success. This is one aspect of the Mars Lander Aerodynamic Model Data Fusion using Machine Learning
with Embedded Uncertainty Quantification (AeroFusion-MLUQ) initiative recently conducted by the NASA Langley
Research Center and collaborating universities [1].

Sensitivity analysis quantifies how variability in model outputs, such as velocity or drag coefficients, is apportioned
to variability of explicitly included model parameters such as Reynolds number. Sensitivity analysis has established
use for quantifying the influence of atmosphere conditions and initial trajectory uncertainty on EDL trajectories [2–4].
Parameters with high sensitivity may require more accurate measurement or can be adjusted to improve performance
whereas parameters with low sensitivity may be fixed for model reduction [5]. An important classification of sensitivity
analysis methods are whether they are local – measuring sensitivity at a single set of parameter values – or global –
quantifying sensitivity over an assumed distribution of parameter values. Local methods are more computationally
efficient but cannot quantify dependencies over the admissible parameter space [5]. In this work, we implement a global
method, termed Morris screening, and assess its strengths and weaknesses in the EDL context [6]. Morris screening
globally averages local sensitivities to permit quantification of sensitivity across parameter distributions without the
high computational costs of other global methods such as Sobol analysis [7].

Sensitivity analysis methods typically require hundreds to tens of thousands of model evaluations, making them
intractable for implementation on even medium-fidelity conventional computational models. However, lower-cost
reduced-order models (ROMs) enable fast enough data throughput to enable accurate sensitivity analysis. A common
method is proper orthogonal decomposition (POD)-based Galerkin reduced-order modeling (POD-ROM), which
transforms the fluid dynamics problem into an efficiently spanned mode space and reduces the governing equations to a
system of temporal ordinary differential equations. However, with a few exceptions, most design-relevant parameters
are not explicitly expressed in POD-ROMs, which limits their use for sensitivity analysis.

In this work, we introduce a boundary penalty method to a standard POD-ROM. Boundary penalties have an
established use in incompressible POD-ROMs quantifying boundary information to improving stability [8, 9]. Boundary
penalties also enable more explicit control of the ROM-simulated boundary conditions, thereby increasing the number
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of parameters that can be assessed within the sensitivity analysis. Within conventional wind tunnel- and CFD-centric
design cycles, the significance of unavoidable differences in both far- and near-field boundary conditions are often
difficult to study directly. This framework addresses that limitation. Gust responses [10] and vehicle surface roughness
[11] are just two types of parametric and hyperparametric sensitivities, which can be quantified using such a boundary
penalty method within the POD-ROM.

We test this methodology using boundary penalties to compute POD-ROM sensitivity to boundary conditions on
an incompressible lid-driven cavity. We measure sensitivity of vorticity and kinetic energy when varying boundary
conditions between regularized and unregularized. To the authors’ knowledge, this is the first study of an incompressible
lid-driven cavity flow’s sensitivity to boundary condition transition from regularized to unregularized. Studies
investigating intermediate boundary conditions in viscoelastic lid-driven cavities exist, but we do not derive expected
results from this study due to the large differences in flow characteristics between turbulent incompressible flows and
low-Reynolds number viscous flows [12]. Therefore, we compare studies of streamline characteristics of regularized
and unregularized lid-driven cavities at different Reynolds numbers [13, 14].

We present a discussion of Morris screening sensitivity analysis in Section III.A and derive the incompressible
formulation of the proper orthogonal decomposition-based reduced-order model with boundary penalty, BP-POD-ROM,
in Section III.B. We then provide a brief description of a 2-D regularized lid-driven cavity model selected to test the
method in Section III.C. Finally, we present Morris screening results on the test case, exploring the sensitivity of
physical parameters including Reynolds number and boundary condition compared to model parameters of penalty
strength and the mean decomposition in Section IV. We intend as future work extension of our method to compute
sensitivity of compressible Navier-Stokes flows around an Orion lander to lander surface roughness nondimensional
quantities such as Reynolds number.

III. Methodology

A. Morris Screening
To compute the sensitivity of a BP-POD-ROM to model parameters, we utilize Morris screening. Morris screening

is a one-at-a-time (OAT) quasiglobal sensitivity analysis method, which approximates the local derivatives at parameter
values drawn from an assumed distribution [6]. Morris screening can be used to approximate derivative-based sensitivity
measures (DGSM), which define sensitivity to be the partial derivative of model outputs to model inputs, integrated
over parameter distributions [5, 15]. The primary sensitivity indices that Morris screening calculates are the mean 𝜇𝑖 ,
absolute mean 𝜇∗

𝑖
, and standard deviation 𝜎𝑖 . Formulae for these indices are,
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for a parameter 𝑖 with 𝑁 parameter samples, a step-size of Δ, where 𝑒𝑖 is the unit vector for parameter 𝑖. Selection of Δ
determines how finely the parameter space is searched around each parameter sample 𝜃 𝑗 . Very small values provide
a finite-difference derivative approximation whereas large values instead quantify large-scale function variations [5].
We normalize all parameter ranges to [0, 1] before implementing Morris screening for nondimensional scaling of Δ,
assume parameters are uniformly distributed to [0, 1], and use Δ = 10−4. We sample parameters with quasirandom
Sobol samples, which increases accuracy of Morris screening compared to random sampling [16].

The absolute mean 𝜇∗
𝑖

quantifies the sensitivity magnitude where parameters with larger 𝜇∗
𝑖

have greater sensitivity
over the sampling region. It provides a similar measurement as total variance from Sobol analysis, which quantifies
how variance in outputs is apportioned to variance in inputs, but is more computationally expensive, more impacted
by error in assumed parameter distributions, and assumes parameters are independently distributed [5]. The absolute
mean is generally used, instead of the mean sensitivity, since sensitive parameters can have 𝜇𝑖 ≈ 0 due to cancellation
of opposite signs in partial derivatives. Morris screening’s 𝜎𝑖 measures the standard deviation of the sensitivity and
identifies parameters that may have nonlinear or coupled effects on a quantity [7]. Additionally, parameters with large
𝜎𝑖 compared to 𝜇∗

𝑖
may be highly sensitive for only a small portion of their distribution.

B. POD-ROM with Boundary Penalty
We derive a proper orthogonal decomposition-based reduced order model with boundary penalty, BP-POD-ROM, by

introducing a penalty term enforcing the boundary condition into a standard reduced order model. Boundary-penalties
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have a well established use in POD-ROMs improving stability of solutions [8, 17]. We mirror the POD-ROM derivation
outlined in Ref. [18], using the penalty formulation found in Ref. [8]. We also extend the method in Ref. [18] for
using matrix algebra to compute POD-ROM terms 𝐵 and 𝐵0 corresponding the boundary penalty. We begin with an
incompressible Navier-Stokes system in 𝑆 dimensions with Dirichlet boundary conditions,{

𝜕𝑡𝑢
𝑖 + 𝑢 𝑗∇ 𝑗𝑢𝑖 = −∇𝑖𝑃 + 1

𝑅𝑒
∇2𝑢𝑖 𝑥 ∈ Ω ⊂ R𝑆

𝑢 = 𝑢Γ 𝑥 ∈ Γ = 𝜕Ω
, (2)

where 𝑢𝑖 (𝒙, 𝑡) is the velocity in the 𝑖𝑡ℎ direction and 𝑃 is the pressure. We note that POD-ROM solutions can deviate
from the boundary conditions since explicit enforcement of the boundary is lost in POD formulation [8]. Therefore, to
enforce the boundary condition Γ when the modal basis deviates, we define the boundary penalty term

𝑏𝑖Γ (𝒙, 𝑡; 𝜅) = 𝜅Υ(𝒙)
(
𝑢𝑖 − 𝑢𝑖Γ

)
, (3)

where Υ restricts the term to the boundary such that,

Υ(𝒙) =
{

1 𝒙 ∈ Γ

0 𝒙 ∉ Γ
. (4)

Here 𝜅 > 0 determines the the strength of the penalty [8]. We then add the penalty to the Navier-Stokes equations and
construct the penalized system

𝜕𝑡𝑢
𝑖 + 𝑢 𝑗∇ 𝑗𝑢𝑖 + 𝑏𝑖Γ (𝒙, 𝑡; 𝜅) = −∇𝑖𝑃 + 1

𝑅𝑒
∇2𝑢𝑖 . (5)

To compute the POD-ROM of the penalized system, we decompose the velocity by assuming 𝑢𝑖 = 𝑢𝑖0 + 𝑢
𝑖
𝑑
, where

𝑢𝑖0 (𝒙) is a smooth time-constant velocity field that quantifies boundary conditions, in the case of the lid-driven cavity,
this is the temporal mean of the flowfield, and 𝑢𝑖

𝑑
(𝒙, 𝑡) is the remaining portions of the flow with homogeneous Dirichlet

boundary conditions. By separating 𝑢𝑖 into its two subcomponents, we expand Equation 2 into

𝜕𝑡𝑢
𝑖
𝑑 = −𝑢 𝑗

0∇
𝑗𝑢𝑖0 − 𝑢

𝑗

0∇
𝑗𝑢𝑖𝑑 − 𝑢 𝑗

𝑑
∇ 𝑗𝑢𝑖0 − 𝑢

𝑗

𝑑
∇ 𝑗𝑢𝑖𝑑 − ∇𝑖𝑃 + 1

𝑅𝑒
(∇2𝑢𝑖0 + ∇2𝑢𝑖𝑑) − 𝜅Υ(𝒙)

(
𝑢𝑖0 − 𝑢

𝑖
∞ + 𝑢𝑖𝑑

)
. (6)

We then expand 𝑢𝑖
𝑑

into a linear modal sum, which separates the spatial and the temporal velocity components:

𝑢𝑖𝑑 (𝒙, 𝑡) = 𝑎𝑛 (𝑡)𝜙
𝑖
𝑛 (𝒙). (7)

Using the modal decomposition, we can expand Equation 6 into 𝑇 (the number of flow snapshots) differential equations
for modal coefficients given by the following equation.

𝜙𝑖𝑛𝜕𝑡𝑎𝑛 = −𝑎𝑛𝑎𝑚𝜙 𝑗
𝑛∇ 𝑗𝜙𝑖𝑚−∇𝑖𝑃−(𝑢 𝑗

0∇
𝑗𝜙𝑖𝑛+𝜙

𝑗
𝑛∇ 𝑗𝑢𝑖0−

1
𝑅𝑒

∇2𝜙𝑖𝑛)𝑎𝑛−𝑢
𝑗

0∇
𝑗𝑢𝑖0+

1
𝑅𝑒

∇2𝑢𝑖0−𝜅
(
𝑎𝑛𝜙

𝑖
𝑛 + 𝑢𝑖0 − 𝑢

𝑖
∞
)
|Γ (8)

Multiplying this equation by the modal basis {𝜙} and integrating yields the Galerkin weak form for Navier-Stokes. The
resulting temporal differential equations for 𝛼𝑛 (𝑡) can be expressed by the system[

𝑀

] (
¤𝑎
)
=

(
𝑎

)𝑇 [
𝑄

] (
𝑎

)
+

( [
𝐿0

]
+ 1
𝑅𝑒

[
𝐿𝑅𝑒

]
+ 𝜅

[
𝐵

] ) (
𝑎

)
+

(
𝑃

)
+

(
𝐶0

)
+ 1
𝑅𝑒

(
𝐶𝑅𝑒

)
+ 𝜅

[
𝐵0

]
. (9)

Here formulae for 𝑀 , 𝑄, 𝐿0, 𝐿𝑅𝑒, 𝐶0, and 𝐶𝑅𝑒 can be found in Ref. [18], and

𝐵𝑘𝑛 = −(𝜙𝑖𝑘 , 𝜙
𝑖
𝑛)𝐿2 (Γ1) = −

∫
Γ

𝜙𝑥𝑘𝜙
𝑥
𝑛 + 𝜙

𝑦

𝑘
𝜙
𝑦
𝑛𝑑𝑆, (10)

𝐵0
𝑘𝑛 = (𝜙𝑖𝑘 , 𝑢

𝑖
∞ − 𝑢𝑖0)𝐿2 (Γ) =

∫
Γ1

𝜙𝑥𝑘
(
𝑢𝑥∞ − 𝑢𝑥0

)
+ 𝜙𝑦

𝑘

(
𝑢
𝑦
∞ − 𝑢𝑦0

)
𝑑𝑆. (11)
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To calculate 𝐵 and 𝐵0 in two dimensions with 𝑇 flow samples and 𝑆 spatial points, we first assume prior derivation of
POD modal matrix Φ [17] and boundary quadrature weights 𝑊 . With these computed, the indices of 𝐵 and 𝐵0 are
given by,

𝐵𝑘𝑛 =
∑︁

(𝑥,𝑦) ∈𝑍

𝑆∑︁
𝑖=1

Φ𝑖
𝑥𝑦𝑘Φ

𝑖
𝑥𝑦𝑛𝑊𝑥𝑦 , (12)

𝐵0
𝑘 =

∑︁
(𝑥,𝑦) ∈𝑍

𝑆∑︁
𝑖=1

Φ𝑖
𝑥𝑦𝑘

(
𝑢𝑖Γ,𝑥𝑦 − 𝑢

𝑖
0,𝑥𝑦

)
𝑊𝑥𝑦 , (13)

where 𝑍 is the subset of points in the discretization of Ω lying on Γ. We also note that 𝑃 ≡ 0 in incompressible
POD-ROMs due to the divergence-free characteristic of POD modes, but that this property is not guaranteed with the
addition of the boundary penalty terms [8].

We can compute 𝐵 and 𝐵0 using the matrix systems

𝐵 =

[
Φ[𝑧, :]𝑇 ◦

(
𝑊 [𝑧]
𝑊 [𝑧]

)]
· Φ[𝑧, :] (14)

𝐵0 =

[
Φ[𝑧, :]𝑇 ◦

(
𝑊 [𝑧]
𝑊 [𝑧]

)]
· (𝑢∞ − 𝑢0 [𝑧]) , (15)

where ◦ denotes the Hamarand product.

C. Lid-Driven Cavity Test Case
To test the implementation of the BP-POD-ROM, we utilize the incompressible 2-D regularized lid-driven cavity.

This flow regime has been studied exhaustively, including significant research on behaviors at different Reynolds
numbers and boundary conditions [19]. Lid-driven cavity problems are classified as regularized or unregularized
according to their boundary condition. All 2-D lid-driven cavities are rectangular domains with homogeneous Dirichlet
boundary conditions on three walls with a nonhomogeneous Dirichlet boundary condition parallel to the fourth wall. In
the unregularized case, the nonhomogeneous condition is constant along the boundary, causing a discontinuity at the
corners. In the regularized case it is a smooth nonnegative definite function that converges to zero at both boundary
edges, eliminating the discontinuity [20]. Both cases have similar dynamics and bifurcations but the unregularized
lid-driven cavity experiences them at lower Reynolds numbers [13, 19].

For snapshot data, we use regularized lid-driven cavity simulations computed via direct numerical simulations
(DNS) at 𝑅𝑒 = 17, 000 and 𝑅𝑒 = 25, 000 and at a discretization of 256 × 256 points [13, 21]. At the lower of these two
Reynolds numbers, the flow exhibits quasiperiodic dynamics; at the higher Reynolds number, the flow is fully aperiodic
and formally chaotic. We form a snapshot matrix using the first 150 time-steps and reduce them to 100 POD modes,
which contain 99.99% of the snapshot matrix mean fluctuating kinetic energy. We define the boundary condition

𝑢Γ (𝑥;𝛼) = | (1 − 𝑥) (1 + 𝑥) |2𝛼 . (16)

We note that 𝑢Γ (𝑥, 1) is equivalent to the regularized boundary, 𝑢Γ (𝑥, 0) is equivalent to the unregularized boundary,
and 𝑢Γ (𝑥;𝛼) is well-defined for 𝑥 ∈ [0, 1] so the boundary condition is suitable for continuous perturbation of 𝛼 in
Morris screening.

For the flow reduction snapshot 𝑢𝑖0, we used an artificial snapshot computed from a stream function created by
summing weighted Gaussian functions

𝑓𝑖 (𝑥; 𝜉, ℓ, 𝜃) = 𝑒−(𝑥−𝜉 )𝑇Σ (𝑥−𝜉 ) , Σ = 20

[
ℓ sin(𝜃) −ℓ cos(𝜃)
cos(𝜃) sin(𝜃)

]
, (17)

where 𝜉 ∈ [−1, 1]2 is the location of the peak of the function, ℓ > 0 is the relative length of the primary axis of the
function, and 𝜃 ∈ (0, 𝜋) is the orientation of the primary axis. Once the velocity is computed from a stream function,
we normalize it so the maximum velocity magnitude is equal to parameter 𝑣̄ ∈ (0, 1). Figure 1 shows the vorticity of the
mean-reduction at base parameter values with the center of each basis function labeled. Functions 1-3 correspond to the
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Fig. 1 Vorticity of artificial mean-reduction using Gaussian basis functions. Functions 1-3 correspond to areas
of high vorticity, 4-5 to low velocity regions, and 6-7 to the main rotational flow.

high vorticity eddies, functions 4-5 correspond to the low-velocity region of the flow, and functions 6-7 correspond
the main rotational flow. This adjustment was performed for the purpose of additional sensitivity analyses detailed in
subsequent discussion.

To test the BP-POD-ROM, we examine the sensitivity of 1) global kinetic energy, 2) global vorticity, and 3) local
vorticities to a) Reynolds number, b) the boundary coefficient 𝛼, c) the penalty strength 𝜅, and d) the mean-reduction
defined by the location 𝜉, relative axis length ℓ, orientation 𝜃, and maximum velocity 𝑣̄, of each basis function in the
mean-reduction. Comparing flow characteristics of regularized and unregularized lid-driven cavities, we observe that
unregularized lid-driven cavities experience vorticity closer the boundary corner behind the driving lid, top-left corner
with our orientation, likely due to the higher boundary velocity in the area causing more flow into and then out of the
corner [13, 14]. Therefore, we anticipate the vorticity behind the driving lid to exhibit higher sensitivity to the boundary
condition and penalty, 𝛼 and 𝜅, than other locations in the domain. Additionally, we expect the method to be insensitive
to mean-reduction perturbation in other areas of the domain that exhibit fewer differences between regularized and
unregularized boundary conditions.

For Morris screening, parameters are sampled uniformly. To quantify a range of bifurcations, we sample Reynolds
number within [11, 000, 20, 000] for the 𝑅𝑒 =17,000 dataset and [19, 000, 28, 000] for the 𝑅𝑒 =25,000 dataset to
check stability over large Reynolds number perturbations. Whereas both of these ranges include both quasiperiodic
and aperiodic flow, the lower range is primarily quasiperiodic and the higher range is primarily aperiodic. We sample
𝑙𝑜𝑔10 (𝛼) and 𝑙𝑜𝑔10 (𝜅) instead of 𝛼 and 𝜅 since both parameters’ effects are identifiable on an exponential scale [8].
We sample 𝑙𝑜𝑔10 (𝜅) between [−12, 2] to include the effect of having no boundary penalty and we sample 𝑙𝑜𝑔10 (𝛼)
within [−2, 0] since at 𝛼 = 0.01 and our discretization, the boundary velocity at the points closest to the corners is 0.99
making it nearly unregularized. We sample 𝑣̄, and ℓ for each function within ±25% of their base values and sample 𝜃
within [0, 2𝜋] for each function. We sample the 𝑥 and 𝑦 coordinates of each basis within 0.2 nondimensional spatial
units of their base values. The full list of parameters with assumed base values and sampling ranges is provided in
Appendix A. Note that the base values are not used in the computation of Morris indices.

To quantify the effect of parameter variations globally, we compute the kinetic energy, 𝐾𝐸 , and the integrated
vorticity 𝑉 . We also measure the local effects of parameter variations using seven local vorticities,

𝑉𝑖 =

∫
𝐵𝑖

𝜔(𝑥)𝑑𝑥, 𝐵𝑖 = {𝑥 ∈ [−1, 1]2 | ∥𝑥 − 𝜉𝑖 ∥ ≤ 0.2}, (18)

where 𝜉𝑖 is the base location for the 𝑖𝑡ℎ mean-reduction function. The local vorticities allow differentiating parameter
effects at characteristic locations of the flow and whether the effects of local perturbations to the mean-reduction are
limited to that region. We measure sensitivities at 𝑡 = 150, the final snapshot in the data, and at 𝑡 = 300 to observe if any
changes in sensitivities occur when solving the BP-POD-ROM for snapshots not provided by data.
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IV. Results and Discussion
Figure 2 shows Morris absolute mean sensitivities for locally integrated vorticities with respect to Reynolds number,

the boundary condition exponent, penalty strength, and mean-reduction characteristics at 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000.
At both Reynolds numbers, the local vorticities, except for the high vorticity eddies 𝑉1, 𝑉2, and 𝑉3, are insensitive to all
parameters. We note that the vorticity in the bottom-left is significantly more sensitive to the boundary condition and
penalty strength than the vorticity in the top-left is, even though that is the region adjacent to the perturbed boundary.
Additionally, the sensitivity of the third vorticity region, corresponding to the bottom-right, is significantly more sensitive
at 𝑅𝑒 =25,000 than at 𝑅𝑒 =17,000. This may be due to the increased complexity of the shear layer and counterrotating
corner vortex at the higher Reynolds number. To further investigate differences in locally integrated vorticities, we
show in Figure 3 the sensitivity of the 𝑥-velocity at each cell to the boundary condition. As anticipated, both Reynolds
number cases have high sensitivities along the edge of the rotational flow, with highest sensitivity in the high-vorticity
areas near the corners. However, we note that the sensitivity at the top corners is minimal, even though this is the region
of greatest difference between regularized and unregularized lid-driven cavity boundary conditions. Low-sensitivity in
this region highlights a limitation of POD-ROMs that they cannot quantify dynamics not present in the initial POD basis
and these regions are relatively stagnant in the unregularized POD basis. However, the boundary penalty still exhibits
expected sensitivity in high-vorticity corners and at the edge of the rotational flow while having minimal sensitivity in
other regions despite mean-reduction perturbation.

Figures 4 and 5 show the Morris screening absolute mean and standard deviation of sensitivity at 𝑡 = 150 proportional
to the maximum sensitivity for each quantity. We restrict these plots to the sensitive parameters identified in Figure 2
and divide by the maximum sensitivity for each quantity to identify which parameter is most sensitive for each quantity.
We observe that 𝑣̄1 is the most sensitive parameter for both 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000, and that all quantities are
insensitive to all other mean decomposition parameters. For 𝑅𝑒 =17,000, Reynolds number is the next most sensitive
parameter and the penalty strength and boundary condition are relatively insensitive, whereas for 𝑅𝑒 =25,000, all three
parameters have similar sensitivities for all quantities. We observe that the mean-reduction parameters, excepting 𝑣̄1, all
have low standard deviations, indicating that sensitivity of these parameters is small for all parameter combinations
sampled. Additionally, we note that 𝑣̄1 has the highest standard deviation of sensitivity for most quantities, suggesting
that kinetic energy and vorticity may be insensitive to 𝑣̄1 at some parameter combinations, even though 𝑣̄1 is the most
sensitive parameter. For both 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000, 𝑣̄1 had the largest 𝜇∗ for all quantities, but 𝜅 or 𝛼 have
higher 𝜎∗ for the kinetic energy, and the locally integrated vorticities for the high-vorticity regions.

Figure 6 shows the Morris screening absolute mean sensitivity at 𝑡 = 300 proportional to the maximum sensitivity
for each quantity. We note that for both Reynolds numbers, the relative sensitivity of the mean decomposition increases
significantly compared to 𝑡 = 150. However, all quantities remain more sensitive to 𝑅𝑒, 𝛼, 𝜅, and 𝑣̄1 than the other
mean decomposition parameters. For 𝑅𝑒 =17,000, we observe increases to the relative sensitivity of all quantities to
most mean-reduction parameters. However, all quantities reamin less sensitivity to mean-reduction parameters, with
the exception of 𝑣1, than to 𝑅𝑒, 𝛼, and 𝜅. We observe similar increases to sensitivity for 𝑅𝑒 =25,000 but with greater
increases to sensitivity of local vorticities to mean-reduction parameters in the corners of the lid-driven cavity. We
also note that for both Reynolds numbers, the relative sensitivity of all quantities 𝑅𝑒 increases but 𝑣1 is still the most
sensitive parameter.
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Fig. 2 Morris mean absolute sensitivity results for local integrated vorticities at 𝑡 = 150 and at (a) 𝑅𝑒 =17,000
and (b) 𝑅𝑒 =25,000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis).
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(a) 𝑅𝑒 =17,000 (b) 𝑅𝑒 =25,000

Fig. 3 Morris mean absolute sensitivity of 𝑢𝑥 to boundary condition at (a) 𝑅𝑒 =17,000 and (b) 𝑅𝑒 =25,000.
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Fig. 4 Morris mean absolute sensitivity results for global and local quantities at (a) 𝑅𝑒 = 17, 000 and (b)
𝑅𝑒 = 25, 000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜇∗ for that quantity.
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Fig. 5 Morris standard deviation of sensitivity indices for global and local quantities at (a) 𝑅𝑒 =17,000 and
(b) 𝑅𝑒 =25,000. Each cell is 𝜎∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜎∗ for that quantity.
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Fig. 6 Morris mean absolute sensitivity results for global and local quantities at 𝑡 = 300 and (a) 𝑅𝑒 =17,000 and
(b) 𝑅𝑒 =25,000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜇∗ for that quantity.
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V. Conclusion
Quantification of CFD simulation variability with respect to boundary conditions and Reynolds number is a

critical step to minimizing risk during planetary entry, descent and landing (EDL). However, high-fidelity direct
numerical simulations are too computationally expensive for most sensitivity analysis while traditional proper orthogonal
decomposition-based reduced order models (POD-ROMs) do not allow for adjustment of boundary conditions. We
implement a novel solution to this limitation by using POD-ROMs with boundary penalties (BP-POD-ROM) to allow
perturbation of boundary conditions, making sensitivity analysis feasible. We tested sensitivity of boundary conditions
using a BP-POD-ROM on a lid-driven cavity test case at 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000, confirming a BP-POD-ROM
constructed with regularized lid-driven cavity data exhibits high sensitivity to the boundary condition when perturbing
towards a regularized boundary condition in the area of greatest anticipated change behind the driving lid and in the
lower corner vorticity regions. This result is also congruent with comparisons of flow characteristics for regularized and
unregularized lid-driven cavities, which have the greatest variation between boundary conditions and Reynolds numbers
in these regions [13, 14].

We found kinetic energy and vorticity were rarely more sensitive to the boundary condition 𝛼 or penalty strength
𝜅 than Reynolds number or the velocity of the mean-reduction in the top-left, 𝑣̄1. We anticipate the BP-POD-ROM
to be highly sensitive to the mean-reduction in the top-left since it influences the structure of POD modes at the
boundary perturbations, thereby affecting the structure of modes that are strengthened and weakened by the penalty.
Except for the velocity in the top-left, all quantities were insensitive to the mean-reduction at 𝑡 = 150, confirming that
perturbations to the mean-reduction in areas minimally affected by the boundary condition or Reynolds number do
not produce vorticity. However, sensitivity to mean-reduction parameters did increase with longer time-integration,
potentially introducing model error. Finally, sensitivity of each velocity cell rather than integrated quantities showed
that the velocity was sensitive to the boundary condition in the expected high-vorticity areas, but not at the corners with
boundary discontinuities.

The BP-POD-ROM provides a novel approach to sensitivity analysis of CFD data. By specifying boundary conditions
in a Galerkin POD-ROM in this way, the approach allows sensitivity analysis of many physical parameters, such as
surface roughness, that are too computationally intensive to study with high-fidelity simulations. For future research, we
plan to extended the boundary penalty method to measure sensitivity of POD-ROMs in more complex models such as
planetary EDL. We will formulate POD bases from high-fidelity FUN3D simulations of compressible flows around the
Orion lander geometry [22]. Sensitivity analysis of the resulting Galerkin POD-ROMs will quantify the influence on
key integrated quantities, such as kinetic energy and lift coefficients, of surface roughness of each lander panel along
with nondimensional quantities such as Reynolds and Mach numbers. The resulting sensitivities can be used to focus
future CFD simulations to decrease uncertainty in high sensitivity parameters.

Appendix

A. Parameter Values and Sampling Ranges
Table A.1 shows the list of model parameters, base values, and sampling ranges for sensitivity analysis. Note that

base values are not used in computation of sensitivity indices and are either nominal values for the initial data or the
assumed parameters for the mean-reduction displayed in Figure 1.
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Table A.1 Base parameter values and sampling ranges for Morris screening.

Parameter Base Value Sampling Ranges
𝑅𝑒 (17, 000 Case) 17,000 [11,000, 20,000]
𝑅𝑒 (25, 000 Case) 25,000 [19,000, 28,000]

𝑙𝑜𝑔10 (𝛼) 0 [−2, 0]
𝑙𝑜𝑔10 (𝜅) −12 [−12, 0]
𝜉𝑥1 −0.75 [−0.9375, −0.5625]
𝜉𝑥2 −0.75 [−0.9375, −0.5625]
𝜉𝑥3 0.75 [0.5625, 0.9375]
𝜉𝑥4 −0.2 [−0.25, −0.15]
𝜉𝑥5 0.2 [0.15, −0.25]
𝜉𝑥6 0.5 [0.375, 0.625]
𝜉𝑥7 0.75 [0.5625, 0.9375]
𝜉𝑦1 0.75 [0.5625, 0.9375, ]
𝜉𝑦2 −0.75 [−0.9375, −0.5625]
𝜉𝑦2 −0.75 [−0.9375, −0.5625]
𝜉𝑦4 −0.2 [−0.25, −0.15]
𝜉𝑦5 0.2 [0.15, 0.25]
𝜉𝑦6 0.5 [0.375, 0.625]
𝜉𝑦7 0.75 [0.5625, 0.9375]

Parameter Base Value Sampling Ranges
𝑣̄1 .95 [0.7125, 1.1875]
𝑣̄2 .5 [0.375, 0.625]
𝑣̄3 .5 [0.7125, 1.1875]
𝑣̄4 .1 [0.075, 0.125]
𝑣̄5 .1 [0.075, 0.125]
𝑣̄6 .1 [0.075, 0.125]
𝑣̄7 .1 [0.075, 0.125]
𝜃1 0 [0, 2𝜋]
𝜃2

3𝜋
4 [0, 2𝜋]

𝜃3
𝜋
4 [0, 2𝜋]

𝜃4 0 [0, 2𝜋]
𝜃5 0 [0, 2𝜋]
𝜃6 0 [0, 2𝜋]
𝜃7 0 [0, 2𝜋]
𝑙1 1 [.75, 1.25]
𝑙2 1.5 [1.125, 1.875]
𝑙3 1.5 [1.125, 1.875]
𝑙4 1 [.75, 1.25]
𝑙5 1 [.75, 1.25]
𝑙6 1 [.75, 1.25]
𝑙7 1 [.75, 1.25]

B. Additional Sensitivity Plots
Figures B.1 and B.2 are the full plots of the 𝜇∗ and 𝜎∗ sensitivity indices Figure B.3 shows the unscaled 𝜇∗ sensitivity

of locally integrated vorticities to all parameters. Figure B.4 shows the scaled 𝜎∗ sensitivity of all quantities to all
parameters.
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(a) 𝑅𝑒 =17,000
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(b) 𝑅𝑒 =25,000

Fig. B.1 Morris mean absolute sensitivity results for global and local quantities at 𝑅𝑒 = 17, 000 and 𝑅𝑒 = 25, 000.
Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the maximum 𝜇∗ for
that quantity.
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(a) 𝑅𝑒 =17,000
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(b) 𝑅𝑒 =25,000

Fig. B.2 Morris standard deviation of sensitivity indices for global and local quantities. Each cell is 𝜎∗ for the
corresponding quantity (x-axis) and parameter (y-axis), divided by the maximum 𝜎∗ for that quantity.
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Fig. B.3 Morris mean absolute sensitivity results for global and local quantities at 𝑡 = 300. Each cell is 𝜇∗ for
the corresponding quantity (x-axis) and parameter (y-axis).
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Fig. B.4 Morris mean absolute sensitivity results for global and local quantities at 𝑡 = 300. Each cell is 𝜇∗ for
the corresponding quantity (x-axis) and parameter (y-axis).
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