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Electricity Generation and Distribution Requires Stability
of Large, Interconnected Power Grids

Power Grid Structure
Buses = power demand
Generators = power
production
Branches = links between
buses and generators

Grids can be modeled as networks
where buses and generators are
nodes and branches are edges

North American Power Grids
Solving this system for optimal generator settings forms the basis of the
OPF (Optimal Power Flow) problem.
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The OPF Problem is Strictly Constrained by Physical Laws

N: Set of Buses
G: Set of Generators
Ci : Cost Function for
generator i
Pi : Real power demand/
generation at bus/ generator
i
Qi : Reactive power
demand/ generation at bus/
generator i
Vi : Voltage magnitude at
bus/ generator i
δi : Voltage angle at bus/
generator i

minimize
PG

i

∑
i∈G

Ci (PG
i ),

subject to
Pi (V , δ) = PG

i − PL
i , ∀i ∈ N

Qi (V , δ) = QG
i − QL

i , ∀i ∈ N
PG,min

i ≤ PG
i ≤ PG,max

i , ∀i ∈ G
QG,min

i ≤ QG
i ≤ QG,max

i , ∀i ∈ G
V min

i ≤ Vi ≤ V max
i , ∀i ∈ N

δmin
i ≤ δi ≤ δmax

i , ∀i ∈ N
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Numerical Methods for Solving OPF are too Slow

OPF is a high dimensional,
non-convex problem
This system relies on having
an input close to the true
solution
Optimizers that find good
solutions exists but can take
up to 15 minutes to solve for
a realistic power grid

minimize
PG

i

∑
i∈G

Ci (PG
i ),

subject to
Pi (V , δ) = PG

i − PL
i , ∀i ∈ N

Qi (V , δ) = QG
i − QL

i , ∀i ∈ N
PG,min

i ≤ PG
i ≤ PG,max

i , ∀i ∈ G
QG,min

i ≤ QG
i ≤ QG,max

i , ∀i ∈ G
V min

i ≤ Vi ≤ V max
i , ∀i ∈ N

δmin
i ≤ δi ≤ δmax

i , ∀i ∈ N

PNNL AC Optimal Power Flow July 24, 2019 4 / 18



Faster Methods Save Money and Reduce Emissions

Generators have to produce
sufficient power for feasible
demand changes within the
time required to run the
model
Shorter model run times
allow operators to keep
generator output closer to
anticipated demand
Generator output closer to
real demand allows lower
energy production, saving
money and reducing
emissions.

California ISO Control Room
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Machine Learning Could Offer Multiple Benefits Over
Numerical Methods with Some Costs

Solving OPF with a machine learning regression algorithm could,
Decrease computation times
Bypass non-convexity of the solution space
Build a better estimation to enter into a higher fidelity model

However, machine learning also has downsides
Can give physically impossible (’illegal’) results
Is limited to a specific network topology
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MATPOWER is a Package of Numerical Algorithms for
Solving OPF

MATPOWER: MATLAB program for OPF
Hundreds of predefined systems
Multiple numerical methods for solving the OPF problem
Research standard
Used to generate data for machine learning algorithm
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Research Goals

Identify optimal machine learning methods to analyze 30 and 300 bus
systems according to

Computational cost
Model accuracy
Adherence to physical laws

Assess viability of machine learning to model large scale power grids
Investigate optimizing metrics
Find a model that will allow analysis of extreme conditions or
deviations from the norm
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We Generated Data Sets By Modifying Power Demand in
MATPOWER Cases

Normally perturbed power demand around the base values for each bus
with a standard deviation of 10% and solved in MATPOWER

1 30 bus system
Training Data: 16,637
Testing Data: 4,160
Model of 1961 US power grid

2 300 bus system
Training Data: 16,347
Testing Data: 4,087
Model of 1993 US power grid
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Neural network algorithms include an input, output, and
hidden layers in between
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No Single Network is Optimal in all Machine Learning
Metrics for 30 bus systems

Hidden Nodes Activation Validation Legality Cost
Layers Function Accuracy Rate Deviation

1 10 Relu 0.8769 86% 0.0063
2 100/100 Relu 0.9663 74% 0.0042
3 5/10/5 Relu 0.8724 98% 0.0071
3 50/50/50 Relu 0.9820 76% 0.0038
3 100/50/100 Relu/Tanh/ 0.9880 75% 0.0030

Relu
3 100/100/100 Relu 0.9911 80% 0.0025
3 100/100/100 Tanh 0.9418 94% 0.0127
3 100/200/100 Relu 0.9863 72% 0.0046
5 100 - 100 Relu 0.9932 76% 0.0060
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Accuracy around 99% with 80% legality for 30 bus neural
network model
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R2 Values are Negatively Correlated with Legality Rates in
XGBoost Models

Used XGBoost models to test OPF on a newer machine learning design

Num of Trees R2 Score Avg. Cost Dev. Legality
1 100 0.7890 0.0141 86.13%
2 150 0.8044 0.0118 85.19%
3 200 0.8148 0.0104 84.76%
4 250 0.8226 0.0097 84.25%
5 300 0.8293 0.0093 84.18%
6 400 0.8411 0.0078 84.13%
7 600 0.8659 0.0074 83.82%
8 800 0.8738 0.0072 83.89%
9 1000 0.8809 0.0068 83.77%

Table: XGBoost configurations
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Our Machine Learning Algorithms were Insufficient to a
300 Bus System

Training Model Non-Training Model
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Conclusions

Our machine learning algorithms were significantly faster than
numerical methods: The neural network was orders of magnitude
faster than MATPOWER.
Neural networks were strong on all metrics but no single network was
best on all metrics
XGBoost was able to achieve high accuracy and legality. Even though
they were negatively correlated, the legality decreased by a very small
margin.
We were unable to expand either of our machine learning algorithms
to a higher node system
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Future Work

Possibilities for future research on the OPF models:
1 Generalize the neural network model for higher nodal systems
2 Investigate higher estimators for the XGBoost model
3 Optimality classifications for both models
4 Analysis of extreme deviations from the norm
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