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Abstract

Lyme disease is one of the most prevalent and fastest growing vector-borne bacterial illnesses
in the United States, with over 25,000 new confirmed cases every year. Humans contract the
bacterium Borrelia burgdorferi through the bite of the tick Ixodes scapularis. The tick can
receive the bacterium from a variety of small mammal and bird species, but the white-footed
mouse Peromyscus leucopus is the primary reservoir in the northeastern United States, especially
near human settlement. The tick’s life cycle and behavior depend greatly on the season, with
different stages of tick biting at different times. Reducing the infection in the tick-mouse cycle
may greatly lower human Lyme incidence in some areas. However, research on the effects of
various mouse-targeted interventions is limited. One particularly promising method involves
administering vaccine pellets to white-footed mice through special bait boxes. In this study,
we develop and analyze a mathematical model consisting of a system of nonlinear difference
equations to understand the complex transmission dynamics and vector demographics in both
tick and mice populations. We evaluate to what extent vaccination of white-footed mice can
affect Lyme incidence in I. scapularis, and under which conditions this method is cost-effective in
preventing Lyme disease. We find that, in areas with high human risk, vaccination can eliminate
mouse-tick transmission of B. burgdorferi while saving money.

1 Introduction

Borrelia burgdorferi, a bacterial species of spirochete, is the main causative agent of Lyme disease,
a tick-borne illness. The bacteria is mainly present in the northeastern United States, as well as
in areas of Asia and Europe [34]. In the U.S., there are approximately 30,000 confirmed cases
reported to the Centers for Disease Control and Prevention (CDC) every year but actual cases
have been estimated as high as 300,000 cases per year [10]. Symptoms can be debilitating, but may
not appear for months after infection [11].
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Lyme disease is transmitted through the bite of hard bodied ticks [37]. The bacteria cannot be
transmitted from parent to offspring in humans by birth or nursing [19]. Reservoirs of B. burgdorferi
include small mammals, such as mice, shrews, chipmunks and skunks, as well as some species of
birds. The focus of this research is to assess the effectiveness of a new control method for Lyme
disease in the U.S.

In eastern North America, the primary Lyme disease vector is the black-legged tick or deer
tick, Ixodes scapularis [37]. The vector’s two-to-three-year life cycle is segmented into three stages
as illustrated in Figure 2. Ticks feed only three times in their lives, each time taking a blood meal
from a host to reach the next developmental life stage [11]. A tick feeds by attaching to a host
and drawing blood over a period of three to five days [22]. B. burgdorferi can then enter the host
through the tick’s saliva (or the tick through the blood meal) while the tick feeds for the next 16
to 36 hours [7].

Black-legged ticks are born uninfected as larvae in the spring. In the summer, they seek a blood
meal from any sort of small mammal, potentially acquiring B. burgdorferi if the host is infected.
After molting to the nymphal stage, they next feed the following spring. Nymphs feed on any size
mammal, from mice to deer to humans [22]. This is where human risk is the greatest since nymphs
are transparent in color and only about 2 millimeters in length, making them difficult to detect on
the body. If the tick had previously become infected in the larval stage it can then, as a nymph,
infect its host. After molting again, they reach the adult stage that fall and seek a final blood meal.
In the adult stage they prefer large mammals such as white tailed deer. Having completed their
final blood meal in the fall, the adults mate, lay eggs, and then shortly die [16].

Although ticks will feed on a variety of hosts, of particular importance to the persistence of B.
burgdorferi is the white-footed mouse Peromyscus leucopus. White-footed mice are the preferred
biting targets of larval ticks and are often targeted by nymphs as well. These mice are generalists
and live in a variety of habitats in eastern North America, thriving especially in habitats where
their natural predators are absent, such as fragmented forests near suburban human settlements
[40, 17]. P. leucopus do not experience any significant reduction in fitness due to either the B.
burgdorferi bacteria or from feeding by larval and nymphal ticks. An individual mouse commonly
becomes infected by a nymphal tick, and goes on to spread the infection to many more larvae over
the rest of its one-year life since a mouse may have up to 100 ticks in the larval and nymphal
stages feeding on it at the same time [12]. These factors combined have all contributed to the high
prevalence of the disease in New England and the Upper Midwest.

It is important to note the seasonality in the tick activity: nymphs are mostly active in the
spring, larvae in the summer, adults in the fall, and in the winter all stage activity decreases [16].
This is due to I. scapularis’ greatly sedentary behavior: the ticks thus depend on their hosts as
means of transportation. Since mice and deer activity tends to be lower during winter, so do tick
bite rates in humans. Ticks in the United States do not have a natural predator, and winter is the
only natural control mechanism. The advent of climate change leading to shorter, warmer winters
is yet another factor in the proliferation of I. scapularis and B. burgdorferi throughout a widening
range [25].

With the increase in tick-borne diseases, much research has been undertaken to model trans-
mission dynamics and understand the impact of control methods [13, 15, 20, 32, 35]. Vaccines and
acaricide, a poisonous substance for ticks and mites, have been studied as interventions to control
transmission of B. burgdorferi between ticks and mice. Multiple lab studies have shown vaccines’
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efficacy in eliciting immune reactions in white-footed mice against B. burgdorferi ’s OspA surface
protein, thereby building resistance to infection [8, 14, 35]. Additionally, field trials of vaccinating
white-footed mice by distributing food with E. coli presenting B. burgdorferi ’s OspA was effective
at reducing prevalence of B. burgdorferi in both mice and nymphal ticks [29]. A current popular
method of administration is the use of bait boxes. Bait boxes are placed along frequented mice
zones where the smell of food entices the mice to enter the box and pass through a wick covered
in fipronil, a commonly used acaricide, which protects the mice from tick bites for the following 4
to 6 weeks [32]. Doping the bait in the boxes also distributes vaccines to the mice [32]. Many of
these studies focused on fragmented forest environments, common near areas being developed for
human use. Forest fragmentation is a large threat to biodiversity since the area becomes unsuitable
to animals with larger ranges, but white-footed mice thrive in this environment, often completely
out-competing other species of small mammal [17].

Although other control methods such as introduction of predators and regulation of host popu-
lations have been proposed, most tick control has proven ineffective (an exception being the fungus
Metarhizium anisopliae), and control of deer populations has not been shown to have a significant
effect in reducing tick-borne diseases [15]. In this study we focus on modeling the introduction of
orally induced vaccines into mice populations to determine the reduction of infected nymphal ticks
and hence reduction in human cases.

The enzootic transmission cycle of B. burgdorferi has been widely modeled. Some mathematical
models seek to understand the complex life cycle of I. scapularis and provide insight on factors
affecting its behavior such as climate, host populations, and seasonal population dynamics [9, 24,
28]. Other models of B. burgdorferi transmission have given insight on its reproductive number
with mice, the importance of targeting I. scapularis larvae, and the ability of B.burgdorferi to
spread geographically [39, 41]. Our research advances this body of work by using the population
parameters and dynamics found in previous models, such as [2, 21, 23, 36], to model not just
B. burgdorferi ’s enzootic transmission, but a leading effort to decrease transmission. This will
provide critical insight to public health officials, researchers, and institutions seeking to assess the
effectiveness of vaccines before they invest in their implementation, and will also provide additional
data to the small body of field trials that have been done.

In this study, we model interacting tick and mouse populations subdivided by infection status
and (for ticks) life stage. In the following sections of this report, we develop a system of difference
equations to describe annual populations while accounting for their complex life cycle seasonality;
then we follow classical qualitative analysis with a cost-benefit analysis to compare vaccination costs
to the economic impact of cases avoided. Our aim is to model a tick-mouse cycle in a fragmented
forest environment in the northeastern United States, where field data are available and where
human risk is especially high [34].

2 Methods

2.1 Assumptions and definitions

To model tick-mouse infection dynamics, we consider certain assumptions. The first is that mice
and ticks mix homogeneously at all stages, and that infection does not affect their behavior or
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interactions within a given geographical area. While we do account for mice having more contacts
with larvae than with nymphs, mouse-tick contact rates are taken to be independent of infection
status in both mouse and tick. We also assume that infection with B. burgdorferi does not affect
mouse birth or death rates, nor tick hatching, death, or biting rates. We assume this because
evidence suggests that B. burgdorferi does not cause any disease in ticks or white-footed mice,
making them an excellent reservoir host [38]. The reproductive fitness of white-footed mice is also
unaffected by the presence of the parasitic ticks [12].

We also assume that infectious mice and ticks remain infectious for the rest of their lives, which
is supported by current research on B. burgdorferi in I. scapularis and P. leucopus [4, 27, 33]. We
assume that any larva or nymph that does not feed does not survive to feed in a later season or the
next year, which is true for the overwhelming majority of ticks [11]. This allows us to first compute
death rates and declare that any larva or nymph that does not die must progress to nymph or adult,
respectively. That is, we do not define an explicit rate at which ticks progress to the next stage
in the life cycle without changing their infectivity; any ticks at a given stage which did not die or
become infected by the end of a season must progress to the next stage with the same infectivity
status. Another assumption in this model is that ticks are only infected by mice (and vice versa)
since white-footed mice have a very high population density and are larvae’s primary hosts [17].
White-footed mice also transmit and receive B. burgdorferi with greater effectiveness than other
tick hosts, making them primary spreaders of the pathogen [5]. The model incorporates seasonality
by having only one life stage of tick feed at a given time. Here, tick questing/feeding periods are
mostly divided into two separate seasons although in reality there is some overlap, particularly for
nymphs and larvae, which will not be taken into account in this work. The final assumption of our
model is that infected ticks and mice do not transmit B. burgdorferi to their offspring [19, 30].

For our model, we build a system of nonlinear difference equations describing a susceptible,
infectious, and vaccinated (MS ,MI ,MV ) mouse population (P. leucopus) coupled with a susceptible
and infectious (NS , NI) tick population (I. scapularis). To understand the mechanisms of these
populations, life cycles, and infectiousness, we construct a compartmental diagram representing the
system’s dynamics, including seasonality. A flow chart capturing the dynamics of the system is
shown in Figure 1, and state variables and model parameters are summarized in Tables 1 and 2.

Variable Definition

M(τ) Total Mouse Population
MS(τ) Susceptible Mice
MI(τ) Infected Mice
MV (τ) Vaccinated Mice

LS(τ) Susceptible Larvae
N(τ) Total Nymph Population
NI(τ) Infected Nymphs
NS(τ) Susceptible Nymphs
AI(τ) Infected Adults
AS(τ) Susceptible Adults

Table 1: State variables for mice and
ticks, taken at time τ .

Parm. Definition

ΛM Birth/recruitment of mice
βM Transmission constant from nymphs to mice
ψ Contact between mice and vaccines
ω Proportion of vaccine effectiveness
µ Natural death of mice

ΛT Recruitment of larvae
βL Transmission constant from mice to larvae
βN Transmission constant from mice to nymphs
α1 Egg to larva natural death
α2 Larva to nymph natural death
α3 Nymph to adult natural death

Table 2: Parameters for population dynamics
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Figure 1: Mouse/tick compartmental model. Rates shown are per capita; transitions without rate
labels indicate tick life stage progression over time.

Mice have a constant birth ΛM per generation and a uniform death rate µ, with an annual
probability of survival thus given by e−µ. All mice are born as susceptible, but can then be
vaccinated at a rate ψω, where ψ is the rate per year at which mice become vaccinated and ω
the percent effectiveness of the vaccine. If not successfully vaccinated, they become infected by
a nymphal tick at rate βM

NI
N , where βM is a constant and NI

N gives the infection prevalence of
nymphs. The infection rate depends only on nymphs because we assume that larvae do not hatch
infected with B. burgdorferi so they cannot infect mice when they feed.

Ticks also have a constant recruitment per generation which is defined as ΛT , being the number
of larvae hatching every year. We assume a probability of death as e−αi , with each αi corresponding
to a respective stage change’s natural death as in Table 2. Larvae become infected at rate βL

MI
M ,

where βL gives the rate of the bacteria infecting a susceptible larva if it bites an infected mouse.
Any larva that does not become infected or die at season’s end progresses to a susceptible nymph.
This transition is based on the assumption that no larvae survive through the next summer without
feeding and progressing to nymphs. Nymphs then begin feeding, and susceptible nymphs can be
infected at a rate of βN

MI
M , where βN denotes the rate at which nymphs bite mice multiplied by the

proportion of times the bacteria infect a susceptible nymph if it bites an infected mouse. At this
point infected nymphs that do not die can also feed on a susceptible mouse to infect it as described
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for mice above. All infectious nymphs and susceptible nymphs that do not die become infectious
and susceptible adults respectively. This transition is based on the assumption that no nymphs
survive through the next spring without feeding and progressing to adults.

2.2 Model development

In order to derive the final model, we first divide a one year time step into several subintervals,
with each subinterval describing one specific process in the cycle. After each of the events is
mathematically described, they can be chained together to describe the population dynamics from
year to year. First, each important event in the system is associated with one or more arrows on the
flowchart. The full list of transition equations derived from these events is provided in Appendix
A.1.

For a visual representation of how the 2-year tick life cycle fits in to a model with 1-year time
steps see Figure 2. Although there is only one generation and life stage assumed to be questing
and feeding at a time, there are 2 generations that overlap each year. Our yearly cycle begins with
nymphs in the spring which quest, feed, and begin molting to the adult phase. We then consider
the larvae which hatch from the eggs of the previous year’s adults and begin questing and feeding
in the summer. These larvae will go on to become the next year’s nymphs. In the summer those
nymphs are dormant while they transition to adulthood and the larvae that hatched in the end of
the spring begin questing and feeding. Those larvae molt during the fall and winter. In the fall,
the adults, who were nymphs in the spring, lay the eggs for the next spring.

These building blocks are designed to be modular to allow for a possible different ordering of
events. For the purposes of this model, the cycle is taken to begin and end in the spring, which
is peak nymph activity. Thus the following sequence of events for the life cycle and transmission
dynamics of the populations is considered:

Spring

1. Mice are vaccinated
Mice are vaccinated at the beginning of our time step because we want to measure the impact
of vaccination as protection against nymphal ticks; thus vaccination must take place before
nymphal ticks begin questing and feeding in the spring.

2. Susceptible mice become infected
Mice being infected is the first event related to the nymphal feeding season. Larvae infected
in the previous year have now progressed to nymphs and can infect mice by taking blood meals.

Summer

3. Nymphs become adults
Nymphs becoming adults means that the nymph successfully feeds, and from there any of the
following may occur:

• Infected nymphs become infected adults (infected nymph potentially infects host)
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• Susceptible nymphs can become infected adults

• Susceptible nymphs can become susceptible adults

4. Mice die
Here we account for mouse deaths that happen in the spring, after vaccination and after
nymphs have fed. We separate this event from the other event of deaths in mice to account
for the mice that are infected in the spring but do not survive to infect larvae in the summer.

5. Mice are born
Here we account for new births in the mice population that happen in the spring after vacci-
nation and the feeding of nymphs. We separate this event from the other event of births in
mice so as to maintain a consistent population size after the deaths calculated in the previous
step.

6. Larvae hatch
Eggs hatch throughout the summer and become larvae. These larvae do not feed until the
following spring (see Figure 2).

7. Larvae die
Here we account for larval deaths that occur during the hatching season and while questing.
Thus the later steps involving larvae can assume that all remaining larvae successfully feed.

8. Larvae feed on mice
Here all remaining larvae successfully feed and become either infected or susceptible nymphs
based on whether they feed on an infected mouse and receive the bacteria. In our model,
we count these larvae as nymphs immediately after they feed whereas in reality they will not
finish molting to nymphs until next spring.

• Susceptible larvae can become susceptible nymphs

• Susceptible larvae can become infected nymphs

Fall through winter

9. Nymphs die
Here we account for all nymphs that died during molting or while questing. Thus the size of
our nymph population is representative of the nymphs that successfully feed and progress to
adult, rather than counting nymphs that would have died while molting.

• Infected nymphs die

• Susceptible nymphs die

10. Mice die
Here we account for death that takes place from the beginning of summer until the end of
winter so that our mouse population count is representative of the population at the beginning
of spring.
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11. Mice are born
Here we account for birth that takes place from the beginning of summer until the end of
winter so that our expression for mouse population is representative of the population at the
beginning of spring.

In Figure 2, different generations are designated by the subscripts 0, 1, and 2. Generation 0
finishes in fall of the first year, Generation 1 covers the two-year span of the image, and Generation
0’s descendants, Generation 2, begin their lives in summer of the second year. The subscripts
are not the same as the τ -indexed yearly time steps in the model. The nymphs and adults for a
particular year are the same generation of ticks, while the larvae are another. The vertical axis
does not depict relative population size, but indicates respective seasons of questing individuals. In
our model, the total population of any stage of tick in each year is the same as the total population
of the same stage in all other years, which allows us to organize their two-year cycle in one year.
This will be shown later in the analysis section.

Figure 2: Two-year tick life cycle with overlapping generations

To construct our system of equations, we use each rate on the flowchart to create an expression
for population before and after its associated event, and then proceed by combining those equations
into the full system. As an example, consider µ, the rate at which mice die. In a discrete-time
system, such rates appear within exponents to reflect the proportions of populations making (or not)
the corresponding transition during a given time period. If we integrate to find the total population
before and after one year’s worth of deaths we get M(τ + 1) = e−µM(τ). The proportion of mice
that survive is e−µ. Likewise, the proportion of mice that die is 1−e−µ. Thus each exponential term
containing a rate has that rate multiplied by 1 year, making the exponent dimensionless. Our time
step of one year is subdivided by seasons in order to accurately account for tick life/activity stages;
thus some of the exponents are shown to be fractions. For example, e−3µ/4 represents survival
after three out of the four seasons. This use of fractional exponents is used for recruitment, death,
vaccination, and contact constants.

To organize this ordering of events we separate the year into 11 sub-timesteps { τ + i
11 | i =

1,2, . . .,11 }. These sub-timesteps do not necessarily correspond to a certain interval of time, and
often we account for an entire year’s worth of a particular process in each sub-step. If we wish
to account for processes over only part of the year our proportions will be of the form e−ζ/k for
arbitrary parameter ζ and fraction of the year 1/k. Furthermore, nonlinear terms will reference

8



other state variables in the exponent, which introduces more complexity to the final equations. A
full derivation of the system of equations can be found in Appendix A.2.

The final system of equations (1), relating populations of mice and nymphs starting and ending
during spring, is presented below. Adult and larvae stages are not included in these final populations
as larvae have not yet hatched and adults died in the previous fall. However, the intermediate steps
contain solutions for each stage at various points in the year.

Let M(τ) = MS(τ) +MI(τ) +MV (τ) and N(τ) = NS(τ) +NI(τ), the total population of mice
and ticks, respectively. Then the system of equations, system (1), is given by:

NI(τ + 1) = ΛT e
− (α1+3α2)

4

1− e
−βL

4

MI (τ)e
−µ

4 +MS(τ)e
−µ

4 e
−ψω

4

1−e
−βM

2
NI (τ)
N(τ)


e
−µ

4 M(τ)+
ΛM

4

 , (1a)

NS(τ + 1) = ΛT e
− (α1+3α2)

4

e
−βL

4

MI (τ)e
−µ

4 +MS(τ)e
−µ

4 e
−ψω

4

1−e
−βM

2
NI (τ)
N(τ)


e
−µ

4 M(τ)+
ΛM

4

 . (1b)

MS(τ + 1) = MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4

(e−
3µ
4 + 3), (1c)

MI(τ + 1) = MI(τ)e−µ +MS(τ)e−µe−
ψω
4 (1− e−

βM
2

NI (τ)

N(τ) ), (1d)

and

MV (τ + 1) = MV (τ)e−µ +MS(τ)e−µ(1− e−
ψω
4 ). (1e)

The number of susceptible mice at time τ + 1 is equal to the number of susceptible mice that
did not die, did not become vaccinated, and did not become infected in the previous year plus the
mice that were born—accounting for the fact that mice are born throughout the year by allowing
1/4 to be born before the larvae feeding season and 3/4 to be born after. The number of infected
mice at time τ + 1 is equal to the number of infected mice that did not die plus the number of
susceptible mice that became infected and did not die. Likewise, the number of vaccinated mice at
time τ+1 is equal to the number of vaccinated mice that did not die plus the number of susceptible
mice that became vaccinated and did not die.

The number of infected and susceptible nymphs at time τ + 1 is equal to the number of eggs
hatched times the survival rate times the probability of becoming infected or not becoming infected,
respectively. This rate is based on a contact rate times the proportion of all mice which were infected
in the previous summer.
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3 Qualitative analysis

3.1 Equilibrium densities of I. scapularis and P. leucopus

The total population size of mice can be described by calculating M(τ + 1), the sum of the suscep-
tible, infected, and vaccinated compartments at time τ + 1. The value M0 is the carrying capacity
of mice in the system.

M(τ + 1) = MS(τ + 1) +MI(τ + 1) +MV (τ + 1)

M(τ + 1) = e−µM(τ) +
ΛM
4
e

−3µ
4 +

3

4
ΛM

This is a linear difference equation whose solution is:

M(τ) = M(0)(e−µ)τ +
ΛM
4

(e−
3µ
4 + 3)

τ−1∑
j=0

e−µj

= M(0)(e−µ)τ +
ΛM
4

(e
−3µ

4 + 3)

(
1− (e−µ)τ

1− e−µ

)
Since µ is a positive constant, e−µ is a proportion and 0 < e−µ < 1. Therefore:

lim
τ→∞

M(τ) =
ΛM
4

(e−
3µ
4 + 3)

1− e−µ
= M0 (2)

This is the mouse population at demographic steady state, and it can also be written as:

M0 =
ΛM
4
e−3µ/4 1

1− e−µ
+

3ΛM
4

1

1− e−µ

In biological terms, it is the number of mice born during event 5 of any year that did not die plus
the number of mice born during event 11 of any year.

Similar calculations can be performed on the total nymphal tick population with N(τ + 1)
equal to the sum of the susceptible and infected tick populations at time τ . In the construction of
this model, we assumed that there are no demographic pressures on the population other than the
constant birth and death rates, so N(τ) is constant from year to year as well. That is,

N(τ + 1) = NS(τ + 1) +NI(τ + 1) = ΛT e
− (α1+3α2)

4 ;

thus, N0 = ΛT e
− (α1+3α2)

4 for all time τ .

The total nymph population is equal to the number of hatched eggs times the proportion of
nymphs that do survive before the sampling time. It follows from this calculation of M0 and N0

that we can reduce system (1) to a system of three equations. Let MS(τ) = M0− (MI(τ)+MV (τ))
and NS(τ) = N0 −NI(τ). The system becomes system (3), which is only in terms of the NI ,MI ,
and MV populations. System (3) will be used throughout the rest of the paper, including in the
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numerical simulations (Section 4), and is given by:

NI(τ + 1) = ΛT e
− (α1+3α2)

4

1− e
−βL

4

MI (τ)e
−µ

4 +(M0−MI (τ)−MV (τ))e−
µ
4 e

−ψω
4

1−e
−βM

2
NI (τ)
N0


e
−µ

4 M0+
ΛM

4

 , (3a)

MI(τ + 1) = MI(τ)e−µ + (M0 −MI(τ)−MV (τ)) e−µe−
ψω
4 (1− e−

βM
2

NI (τ)

N(τ) ), and (3b)

MV (τ + 1) = MV (τ)e−µ + (M0 −MI(τ)−MV (τ)) e−µ(1− e−
ψω
4 ). (3c)

In the next section we proceed to calculate the fixed points of system (3) in order to understand
its long-term dynamics.

3.2 Disease-free equilibrium

To find fixed points, we start by setting the equations in system (3) equal to their respective
populations. That is, NI(τ + 1) = NI(τ) = N∗I , MI(τ + 1) = MI(τ) = M∗I , and MV (τ + 1) =
MV (τ) = M∗M . Setting N∗I = 0 yields the disease-free equilibrium (DFE),

N∗S = N0, N
∗
I = 0, M∗S = M0

1− e−µ

1− e−µ−
ψω
4

, M∗I = 0, and M∗V = M0
e−µ(1− e−

ψω
4 )

1− e−µ−
ψω
4

.

As expected, the total population is at demographic steady state: M∗S+M∗V = M0. We can also
interpret the mouse populations at disease-free equilibrium as proportions of the total equilibrium
mouse population. That is,

M∗S
M0

=
1− e−µ

1− e−µ−
ψω
4

and
M∗V
M0

=
e−µ(1− e−

ψω
4 )

1− e−µ−
ψω
4

.

The expression
M∗S
M0

is the proportion of mice that die, and are thus replaced at demographic equi-

librium, over the proportion that either get vaccinated or die. Furthermore,
M∗V
M0

is the proportion

that survive times the proportion that do get vaccinated over the proportion that either die or get
vaccinated.

The stability of the disease-free equilibrium can be analyzed either via the control reproduction
number RC or by linearizing system (3), calculating the Jacobian at the disease-free equilibrium,
and identifying the eigenvalues. Notice that this matrix is singular; the first row is a constant

multiple
e−

(α1+3α2)
4 (1− e−µ)βLΛT(

3e−µ + e−3µ/4
)

ΛM
of the second. The Jacobian matrix of system (3) (NI ,MI ,MV )
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at the DFE is given by

J
∣∣
DFE

=


βMβL

8
(3e−

µ
4 +e−µ)e−

3µ
4 −ψω

4

(1−e−µ−
ψω
4 )

(1−e−µ)
(3e−µ+e−3µ/4)

e−µ
e−

(α1+3α2)
4 (1−e−µ)βLΛT

(3e−µ+e−3µ/4)ΛM
0

βMΛM
8ΛT

(3e−
µ
4 +e−µ)e−

3µ
4 −ψω

4

(1−e−µ−
ψω
4 )e−

(α1+3α2)
4

e−µ 0

0 −e−µ
(

1− e−
ψω
4

)
e−µ−

ψω
4

 .

The eigenvalues of this matrix are λ1 = 0, λ2 = e−µ−
ψω
4 , and λ3 = (1− e−µ)r + e−µ, where

r =
βMβLe

−ψω
4

8(1− e−µ−
ψω
4 )

(
e−µ + 3e−µ/4

1 + 3e−µ/4

)
. (4)

Since |λ1| < 1, |λ2| < 1, the DFE is locally asymptotically stable iff |λ3| < 1. But λ3 > 0, and
some algebra shows that λ3 < 1 iff r < 1.

Although r < 1 is a condition for stability, r 6= RC . But by Allen and van den Driessche [3]
either r = RC = 1, 1 < r ≤ RC , or 0 ≤ RC ≤ r < 1, meaning stability conditions based on r are
equivalent to stability conditions based on RC . The canonical value of RC can be calculated using
the next-generation matrix approach (see Appendix A.4 for details):

RC =
1

2

(
r(1− e−µ) +

√
r2(1− e−µ)2 + 4re−µ

)
.

This depends on ∂NI(τ+1)
∂NI(τ) = ka = r(1 − e−µ) and a term representing ∂NI(τ+1)

∂NI(τ) times b
1−b , the

equilibrium proportion of mice that have survived from previous years. By inspection, r < 1 iff
RC < 1.

3.3 Endemic equilibrium

To determine the existence of further fixed points we reduce the system of equilibrium conditions
to one equation. We solve the steady-state version of equation (3c) for M∗V in terms of M∗I and
equation (3b) for M∗I in terms of N∗I . Substituting the resulting expressions into equation (3a), we
can write a single equation in terms of N∗I . For the full derivation, see Appendix A.5. Equilibria
are then roots of this equation on the interval [0,1]:

G

(
N∗I
N0

)
= ln

(
1−

N∗I
N0

)
+

βLM0e
−µ

4 e−
ψω
4

4
(
e−

µ
4M0 + ΛM

4

)
 1− e−

βM
2

N∗
I

N0

1− e−µ−
ψω
4 e
−βM

2

N∗
I

N0

 = 0. (5)

Since equation (5) is transcendental, we cannot find its zeroes analytically. However, by inspec-
tion, we notice that G(0) = 0, reflecting the existence of the disease-free equilibrium. In addition,
there exists a unique endemic equilibrium (a root of G in (0,1)) iff RC > 1, which can be seen as
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follows. By inspection, G(x)→ −∞ as x→ 1−. We calculate

G′(x) = − 1

1− x
+
βLβMM0e

−µ
4 e−

ψω
4

8
(
e

−µ
4 M0 + ΛM

4

) · (1− e−µ−
ψω
4 )e−

βM
2
x(

1− e−µ−
ψω
4 e−

βM
2
x
)2

from which

G′(0) =
βLβMM0e

−µ
4 e−

ψω
4

8
(
e

−µ
4 M0 + ΛM

4

) · (1− e−µ−
ψω
4 )(

1− e−µ−
ψω
4

)2 − 1

and also

G′(x) = 0⇔ 1− x =
8
(
e

−µ
4 M0 + ΛM

4

)
βLβMM0e

−µ
4 e−

ψω
4

·

(
1− e−µ−

ψω
4 e−

βM
2
x
)2

(1− e−µ−
ψω
4 )e−

βM
2
x

= h(x).

Since some algebra shows that h′(x) > 0, and thus h(x) is increasing, while 1−x is decreasing, the
two functions can intersect in at most one point. This occurs iff

h(0) =
8
(
e

−µ
4 M0 + ΛM

4

)
βLβMM0e

−µ
4 e−

ψω
4

· (1− e−µ−
ψω
4 ) < 1,

which is the same condition as G′(0) > 0 and also (since, from (2), M0e−µ/4

M0e−µ/4+ΛM/4
= e−µ+3e−µ/4

1+3e−µ/4
)

equivalent to r > 1 and thus RC > 1. Figure 3 illustrates graphs of G using three different sets of
values for the infection rates βM and βL, with other parameter values as given in Table 3; RC > 1
(and thus an endemic equilibrium exists) for the first two curves, but not for the lower curve.

Figure 3: An endemic equilibrium of the model is a root of the function G.
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Parameter Definition Value Units Reference

M0 Total mouse population 50 mice [21]
ΛM Birth/recruitment of mice 65.02 mice
ψ Contact between mice and vaccines varied 1/year
βM Transmission constant from nymphs to mice varied 1/year
ω Proportion of vaccine effectiveness 0.96 — [35]
µ Natural death rate of mice 4.38 1/year [23, 39]

N0 Total nymph population 1000 ticks [2]
ΛT Recruitment of larvae 1.998×105 ticks
βL Transmission constant from mice to larvae varied 1/year
βN Transmission constant from mice to nymphs varied 1/year
α1 Egg to larva natural death 11.98 1/year [36]
α2 Larva to nymph natural death 3.07 1/year [36]
α3 Nymph adult natural death 3.22 1/year [36]

Table 3: Parameter values for mouse and tick population dynamics

4 Numerical results

4.1 Parameter estimation

Estimated values for model parameters are given in Table 3. Where possible, they were taken from
prior studies; in other cases, key parameters (infection rates β∗ and the vaccination rate ψ) were
varied in numerical analysis, as detailed below. Most of these parameters are given as rates in units
of 1/year, often converted from 1/day as found in literature.

The total mouse population of 50 and total nymph population of 1000 were estimated using
data on mice and tick populations in fragmented forest areas, relating woodland size to population
density. We focused on plot sizes of 1.1 hectares to match the study that gave us our proportion
of vaccine effectiveness [35]. Though the data varied, we chose populations that had biological
significance and would allow us to simulate our model. Values ΛM and ΛT were calculated from
the population death rates and sizes, using the equilibrium solutions for the total mouse and tick
populations as found in Appendix A.2.

Values for the tick death rates α1, α2, and α3 were derived from survival proportions between
each stage of the tick life cycle; exact calculations are in Appendix A.6.

The three sets of β values in units of 1/year, βN= 0.68, 0.86, and 1.47, βL=3.41, 4.29, and 5.73,
and βM=7.05, 8.87, and 11.85, were estimated to signify very low, moderate, and high transmission
rates, each respectively corresponding to approximately 20%, 35% and 50% of nymphs infected
at equilibrium. Since biting rates between ticks and mice are dependent on abiotic factors and
proportions of other nymph hosts that are not present in our model, we wanted to use β values
that would provide information on a wide range of biologically feasible scenarios. All calculations
for parameter values are explained further in Appendix A.6.
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4.2 Numerical analysis

Simulations were implemented using MATLAB. Baseline results with parameter values as given
in Table 3, intermediate infection rates as given above, and vaccination rate ψ = 10/year, showed
populations reaching equilibrium within 6 years, and vaccination driving a high endemic prevalence
in ticks to a low one (see Figure 4).

(a) No Vaccination (b) Vaccination

Figure 4: Mouse and nymph populations with and without vaccination at βN=0.86/year,
βL=4.29/year, βM=8.87/year, yielding R0 = 4.77, RC = 1.27.

Examining endemic prevalence levels as functions of the infectious contact rates (Figure 5)
revealed a low, saturating asymptotic value of approximately 1.2% for endemic prevalence in mice
as infection rates increase (in the absence of vaccination, ψ = 0).1 This can be explained by the
ordering of events in our model, specifically observing that three-fourths of mouse recruitment
takes place at the end of the year. Since all mice are born susceptible, these mice are counted as
susceptible at our sampling time in the next spring. Even if 100% of mice were to be infected after
the nymph biting period, those mice must survive fall, winter, and most of spring to affect the next
cycle, which gives biological justification to the trend in Figure 5 explained above. Due to the short
life span of the mice, only a very low proportion of them actually make it to the next spring, so
biologically there should always be a minimum number of susceptible mice in the spring.

Another important finding of this analysis is that endemic prevalence in mice reaches this
asymptotic limit at a point (βL = 4 in Figure 5) where the proportion of infected nymphs is still
approximately 30%. This means that the spring population of mice is not a good predictor of the
proportion of infected nymphs that year as the percent of nymphs infected could vary from 30% to
100% with very little measurable change in mouse infection prevalence. Additionally, the infected
mouse population is so small for any infectious contact rates that any field estimation would be

1 We vary infectious contact rates by keeping a constant ratio between βN , βL, and βM . There is a set ratio
between the mouse and the nymphal contact rate because both depend on the rate at which ticks bite mice. To
convert the tick biting rate to the mouse biting rate, we multiplied by the proportion of nymphs to mice. We then
set βN to vary from 0 to 1.2 and then tested varying ratios between βN and βL until we found sets of contact rates
that corresponded to percent nymphs infected at equilibrium that matched biological expectations [29].
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very difficult. In short, while the exact maximum proportion of infected mice will vary between
geographical regions and mice habitats, the proportion of infected mice measured in the spring is
not a good predictor for Lyme disease risk that year.

Figure 5: Asymptotic fixed points for infected
mice and nymph proportions of population as
βL varies, ψ = 0, R0 ∈[0, 12.68].

Figure 6: Population proportions at low contact
rates as ψ varies with βN = 0.68/year, βL =
3.41/year, βM = 7.05/year, RC ∈ [0.18, 3.02].

To analyze the effect of vaccination on the transmission cycle, we graph endemic equilibria with
respect to varying vaccination rates, ψ, at the low (Figure 6), medium (Figure 7), and high (Figure
8) test values for contact rates between mice and ticks discussed in our parameter estimation.
These plots show that the number of infected ticks can be reduced to less than one (less than 10−3

proportion infected since the nymphal population size is 1000) at vaccination rates of approximately
2/year, 4/year, and 6/year2 for the low, medium, and high sets of infectious contact rate values
respectively. This shows an approximately linear relationship between endemic prevalence in ticks
without vaccination and the vaccination rate required to control the epidemic. If equilibrium
infection prevalence increases by 15% then the vaccination rate required to eliminate the pathogen
is an additional 2/year. For example, the low set of contact rates which correspond to approximately
20% of nymphs infected require a vaccination rate of 2/year to be reduced to less than one infected
tick (Figure 6). The medium contact rates which correspond to approximately 35% infected require
a vaccination rate of 4/year to be reduced to less than one infected tick (Figure 7). A similar change
is seen again from the medium contact rates to the high contact rates, corresponding to 50% of
nymphs infected, as they require a vaccination rate of 6 per year to be reduced to less than one
infected nymph (Figure 8). This can be a guide to those seeking to introduce vaccination across a
variety of areas who may not have the aid of computational tools to recalculate vaccination rates
for each area.

We note that the values of the vaccination rate ψ required to reduce the control reproduction
number RC to less than 1 are significantly greater than the vaccination rates required to reduce
the number of infected ticks to less than 1. For small β values, this is at ψ = 4.58/year, for medium

2A note on interpretation: A vaccination rate of ψ = 6/year means it takes one mouse an average of 1/6 of a year
to encounter a bait box.
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Figure 7: Population proportions at medium
contact rates as ψ varies with βN = 0.86/year,
βL = 4.29/year, βM = 8.87/year, RC ∈
[0.28, 4.77].

Figure 8: Population proportions at high con-
tact rates as ψ varies with βN = 1.47/year, βL =
5.73/year, βM = 11.85/year, RC ∈ [0.48, 8.51].

β values, it is at ψ = 6.55/year, and at large β values, this is at ψ = 11.04/year. The practical
difference between these two thresholds lies in the scale of the population being modeled: as the
total population size increases, the minimum detectable endemic prevalence approaches 0 and the
two thresholds converge. We remind the reader that our choice of scale here reflects the model’s
implicit assumption that the populations mix homogeneously.

Since equilibria may take many years to reach, we also mapped the effect of vaccination on
the proportion of infected nymphs after two, five, and ten years in Figure 9. These results showed
that, not only can vaccinating mice significantly reduce the endemic prevalence, it can do so within
short time periods. Vaccination was effective at reducing the number of infected nymphs to zero for
all infectious contact rates within the range of vaccination rates sampled. As the figure indicates,
equilibrium proportions of infected ticks above 20% were reached quickly (within two years) but
the time required to reach lower equilibrium prevalences in ticks depended strongly on vaccination
rates. This means that reaching equilibrium prevalences lower than 20% typically takes more than
two years (but can be accelerated by increasing vaccination): if the proportion of infected ticks is
above 20%, individuals using vaccines to reduce the number of infected ticks should expect to see
the same results every year after two years; however, for lower proportions, they should see lower
number of ticks each year if continuing to vaccinate at the same rate.

4.3 Risk and cost analysis

Through risk and cost analysis we can understand the effectiveness of mouse vaccination at reducing
human cases of Lyme disease. We have determined that vaccines can significantly reduce the number
of infected nymphal ticks in an area; thus we also compare the cost of vaccination with reductions
of human risk to determine if the intervention is cost-effective. In order to predict the change in
the risk of human Lyme disease cases, we construct the following function for the yearly number of
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Figure 9: Vaccine effect on nymphs compared to years of use for low, medium, and high contact
rates, RC ∈ [0.18, 3.02], RC ∈ [0.28, 4.77], and RC ∈ [0.48, 8.51]. (β values in 1/yr)

new human cases, I(t), also known as the incidence rate:

I(t) = ρ · γ ·HS ·
NI(t)

N
,

where γ is the biting rate of tick nymph per human per year, HS is the number of humans at risk,
ρ is the probability of infection for humans after a bite from an infectious nymph, and NI(t)/N is
the current infection prevalence in nymphs (dependent on ψ and β values). Although adult ticks
also bite humans, we do not include these contacts in our model because this is minimal in terms
of transmitting infection to humans; due to the large size of these ticks, most are detected and
removed before the necessary time to transmit the infection [6, 26]. We take the value of ρ to be
0.031, obtained by taking an average from a range of values in our source [18]. We found γ to
be valued at 0.005/day, or equivalently 0.913/year3, from another model but decided to vary this
value since it was unclear how this γ had been calculated [39].

More precisely, HS is the number of people who spend their tick exposure time in that tick-
infected region. There are three components to HS . First is the yearly number of unique people
that move through an area. Second is the average percentage of those people’s tick exposure time
spent in the vaccination area. Third is the percentage of that area covered by 1 hectare. For
example, 1,000 unique people may walk on a suburban trail in a year. Since this a neighborhood
trail, most of those people likely walk dogs or spend time with their children regularly there, so the
average person may spend 80% of their total time exposed to ticks on that trail. Finally, that trail
may be a kilometer long, so if mice are vaccinated for 50 meters on either side of the trail, the total

30.005 ∗ 365 = 1.825/year. Nymphs are active for only half the year, and 1.825/2 ≈ 0.913.
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HS value 80 160 750

Geographical area Trail Trail Park
Number of people 500 1000 5000

Proportion of time spent 80% 80% 30%
Proportion of area covered 20% 20% 50%

Table 4: Scenarios for estimation of HS values

Parm. Definition Unit Value Source
x Increase in cost per increase in vaccination rate dollars $329.29 [29]
ψ Contact between mice and vaccines 1/year varied -
θ Average cost of Lyme disease treatment dollars/infection $3537.70 [1]
ρ Probability of infection for humans after nymph bite infections/bites .031 [18]
γ Biting rate of tick nymph per human per year bites/(human·yr) varied -
HS Susceptible humans people varied -

Table 5: Parameters, with values, for risk and cost equations

vaccination area would be 5 hectares; thus a single hectare of vaccination would only cover 20% of
the total trail risk. This gives us our first estimated HS value of 1000 ∗ 0.8 ∗ 0.2 = 160. The other
two estimated values follow similarly. One accounts for a similar trail, but less populated, and the
other represents a public park. Table 4 compares these three scenarios.

To analyze the cost of Lyme disease treatment, we examine the relationship between total cost of
implementing mouse vaccination and average cost for Lyme disease treatment per infected person.
We assume a linear relationship between the vaccination rate ψ and the increase in cost per increase
in vaccination rate, x. Since white-footed mice are territorial, it is possible that a particular nest
of mice are the only ones feeding from a particular bait box[31]. Thus, the same number of mice
would access each box regardless of the number of boxes until all mice are vaccinated, making this
assumption biologically feasible. This achieves the following cost function,

Ctotal = x · ψ + I · θ,

where θ is the average cost of Lyme disease treatment per infection, calculated to be $3537.70 per
year per person based on studies of health care costs of Lyme disease, as shown in Appendix A.6.
Using data from a field study of vaccines targeting white-footed mice, we estimated x to be $329.29
per unit increase in ψ, as shown in Appendix A.6 [13, 29]. Thus the total cost will be given as

Ctotal = x · ψ + θ · ρ · γ ·HS
NI

N
. (6)

For a summary of parameter definitions and values for the cost function see Table 5.

Since NI is a decreasing function of ψ, we have an optimization problem to adjust vaccination
rate to maximize cost savings (relative to no vaccination) for a human population infected with
Lyme disease and mouse vaccination intervention after ten years across varying values of γ. Figures
10, 11, and 12 represent susceptible populations of 80, 160, and 750 humans, respectively. In all of
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these plots we observe a similar trend in that the higher the biting rate γ, the more money saved.
However, only for a human population size of 1,000 does vaccination become cost-effective for every
γ value. In each case there is a cost-optimal value for ψ. The greater the human population, the
greater this optimal vaccination rate. The cost savings also scale up for larger human populations.
In the parks, with the highest number of susceptible humans, vaccination saved up to approximately
$27,000 per year, whereas significantly less money is saved from vaccinating on trails.

This analysis reflects that vaccines can be a cost-efficient method when compared to treatment
for Lyme disease but likely only in areas where mice come into frequent contact with bait boxes,
especially in areas with a high level of human traffic.

Figure 10: Dollars saved after 10 years of vacci-
nation on a low traffic trail for varying nymphal
biting rates, HS = 80, medium contact rates

Figure 11: Dollars saved after 10 years of vacci-
nation on a high traffic trail for varying nymphal
biting rates, HS = 160, medium contact rates

5 Discussion

This study used a coupled mouse (MS ,MI ,MV ) and nymphal tick (NS , NI) model to determine
whether vaccinating mouse populations in fragmented forests could reduce the number of Lyme-
infected ticks there. This model captures both the seasonal dynamics of the mouse-tick interactions
and the effects of vaccination on the persistence of the infection. These characteristics are important
because an accurate estimate of infection prevalence within the nymphal stage relates directly to
the expected number of human cases in an area and the cost-effectiveness of vaccines.

Analysis showed that vaccination can eliminate local B. burgdorferi transmission between mice
and ticks at achievable rates and duration of vaccination. Additionally, we found that the vacci-
nation rates required to reduce infection prevalence in ticks to 20% achieved the reduction within
two years, whereas the time required to reach lower prevalences was sensitive to vaccination rates.
Thus infected tick prevalence can be reduced to 20% within the first two years, but reduction to
trace levels would likely take longer.
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Figure 12: Dollars saved after 10 years of vaccination in a suburban park for varying nymphal
biting rates, HS = 750, medium contact rates

Furthermore, the cost-benefit analysis shows that vaccine intervention is cost-effective in specific
targeted areas where mice are primary reservoirs if there is significant human presence in the area,
especially if ticks bite humans frequently there. We believe this could be a particularly practical
measure in fragmented forests near human settlements like parks or wooded areas in and around
suburban developments. These environments often have very high infection prevalence among
nymphal ticks, low mammal diversity, and high levels of human activity.

In future research, this model could be adapted to include influence of other control factors.
Some promising methods include chemical or fungal pesticides to cull tick populations, or increasing
mammalian biodiversity to allow for predation or for competition with less competent reservoirs
of small mammal hosts. Modeling the pesticide methods could include adding classes of mice that
are protected by pesticide applied directly to their fur through bait boxes similar to the ones that
deliver the vaccine. Increased biodiversity might include predator-prey or competition dynamics
with different species of host having different transmission rates. A more detailed cost analysis
would also be possible. Lyme disease is a significant public health problem, and a variety of
mathematical models could offer solutions without the need for expensive field tests.
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reservoir competence of mammals bearing Borrelia burgdorferi at an endemic site in the north-
eastern United States. Parasites & Vectors, 8(1):299, May 2015.

[6] Caraco T., Glavanakov S., Chen G., Flaherty J.E., Ohsumi T.K., Szymanski B.K. Stage-
structured infection transmission and a spatial epidemic: A model for Lyme disease. The
American Naturalist, 160(3):348–359, 2002. PMID: 18707444.

[7] Cook M.J. Lyme borreliosis: a review of data on transmission time after tick attachment.
International Journal of General Medicine, 8:1–8, 2015.

[8] Cornstedt P., Shueler W., Meinke A., Lundber U. The novel Lyme borreliosis vaccine VLA15
shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS
One, 10(9), 2017.

[9] Dobson A.D.M, Finnie T.J.R, Randolph S.E. A modified matrix model to describe the seasonal
population ecology of the European tick Ixodes ricinus. Journal of Applied Ecology, 48(4):1017–
1028, 2011.

[10] Centers for Disease Control and Prevention. How many people get Lyme disease? https:

//www.cdc.gov/lyme/stats/humancases.html. Accessed: 2018-07-06.

[11] Centers for Disease Control and Prevention. Lyme disease. https://www.cdc.gov/lyme/

index.html, January 2018. Accessed: 2018-07-11.

[12] Hersh M.J., et al. When is a parasite not a parasite? effects of larval tick burdens on white-
footed mouse survival. Ecology, 95(5):1360–1369, 2014.

[13] Interlandi J. Bait boxes are a safe way to keep ticks out of your yard, Consumer
Reports. https://www.consumerreports.org/pest-control/bait-boxes-are-a-safe-way-to-keep-
ticks-out-of-your-yard/, January 2018. Accessed: 2018-07-18.

[14] Izac J.R., Oliver L.D., Earnhart C.G., Marconi R.T. Identification of a defined linear epitope in
the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses:
Implications for vaccine development. Vaccine, 35(25):3178–3185, 2017.

22

https://www.cdc.gov/lyme/stats/humancases.html
https://www.cdc.gov/lyme/stats/humancases.html
https://www.cdc.gov/lyme/index.html
https://www.cdc.gov/lyme/index.html


[15] Jordan R.A, Schulze T.L., Jahn, M.B. Effects of reduced deer density on the abundance of
Ixodes scapularis (Acari: Ixodidae) and Lyme disease incidence in a northern New Jersey
endemic area. Journal of Medical Entomology, 44(5):752–757, 2007.

[16] Lane R.S., Piesman J. and Burgdorfer W. Lyme borreliosis: relation of its causative agent to
its vectors and hosts in North America and Europe. Annual Review of Entomology, 36(1):587–
609, 1991. PMID: 2006870.

[17] LoGiudice K., Ostfeld R.S., Schmidt K.A., Keesing F. The ecology of infectious disease: Effects
of host diversity and community composition on Lyme disease risk. Proceedings of the National
Academy of Sciences, 100(2):567–571, 2003.

[18] Magid D., Schwartz B., Craft J., Schwartz J.S. Prevention of Lyme disease after tick bites.
New England Journal of Medicine, 327(8):534–541, 1992. PMID: 1298217.

[19] Mather T.N., Telford S.R., Adler G.H. Absence of transplacental transmission of Lyme disease
spirochetes from reservoir mice (Peromyscus leucopus) to their offspring. The Journal of
Infectious Diseases, 164(3):564–567, 1991.
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A Appendix

A.1 Single-event transition equations

The following table describes the effect of each possible model event on the relevant populations.
Here c is the proportion of the year for which the particular process takes place. This is not
constant for a given compartment transition and depends on the order of events and transitions
being divided into multiple events. Also, M(τ) = MI(τ) + MV (τ) + MS(τ) is the total mouse
population at time τ , while N(τ) = NS(τ) +NI(τ) counts all tick nymphs at time τ .

Mouse events

Event Flow Term in equation

Mice are born →MS MS(τ + i+1
k ) = cΛM +MS(τ + i

k )
Mice are vaccinated MS →MV MS(τ + i+1

k ) = MS(τ + i
k )e−cψω

MV (τ + i+1
k ) = MV (τ + i

k ) +MS(τ + i
k )(1− e−cψω)

Mice die MS → MS(τ + i+1
k ) = MS(τ + i

k )e−cµ

MI → MI(τ + i+1
k ) = MI(τ + i

k )e−cµ

MV → MV (τ + i+1
k ) = MV (τ + i

k )e−cµ

Mice are infected MS →MI MS(τ + i+1
k ) = MS(τ + i

k )e
−cβM

NI (τ+ i
k

)

N(τ+ i
k

)

MI(τ + i+1
k ) = MI(τ + i

k ) +MS(τ + i
k )(1− e

−cβM
NI (τ+ i

k
)

N(τ+ i
k

) )

Tick events

Event Flow Term in equation

Ticks die LS → LS(τ + i+1
k ) = LS(τ + i

k )e−cα

NS → NS(τ + i+1
k ) = NS(τ + i

k )e−cα

NI → NI(τ + i+1
k ) = NI(τ + i

k )e−cα

AS → AS(τ + i+1
k ) = AS(τ + i

k )e−cα

AI → AI(τ + i+1
k ) = AI(τ + i

k )e−cα

Larvae feed LS → NI NI(τ + i+1
k ) = LS(τ + i

k )e
−cβL

MI (τ+ i
k

)

M(τ+ i
k

)

LS → NS NS(τ + i+1
k ) = LS(τ + i

k )(1− e
−cβL

MI (τ+ i
k

)

M(τ+ i
k

) )
Nymphs feed NI → AI AI(τ + i+1

k ) = NS(τ + i
k )

NS → AI AI(τ + i+1
k ) = NS(τ + i

k )e
−cβN

MI (τ+ i
k

)

M(τ+ i
k

)

NS → AS AS(τ + i+1
k ) = NS(τ + i

k )

1− e
−cβN

MI (τ+ i
k

)

M(τ+ i
k

)


Larvae hatch → LS LS(τ + i+1

k ) = Ls(τ + i
k ) + cΛT
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A.2 Model derivation

Again let M(τ) = MS(τ) +MI(τ) +MV (τ) and N(τ) = NS(τ) +NI(τ).

1. Mice are vaccinated

MS(τ +
1

11
) = MS(τ)e−

ψω
4

MV (τ +
1

11
) = MV (τ) +MS(τ)(1− e−

ψω
4 )

2. Nymphs infect mice

MS(τ +
2

11
) = MS(τ +

1

11
)e
−βM

2

NI (τ)

N(τ)

= MS(τ)e−
ψω
4 e
−βM

2

NI (τ)

N(τ)

MI(τ +
2

11
) = MI(τ +

1

11
) +MS(τ +

1

11
)

(
1− e−

βM
2

NI (τ)

N(τ)

)
= MI(τ) +MS(τ)e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
3. Susceptible and infected nymphs feed on mice and become infected adults

AI(τ +
3

11
) = NI(τ +

2

11
) +NS(τ +

2

11
)

(
1− e

−βN
2

MI (τ+ 2
11 )

M(τ+ 2
11 )

)

= NI(τ) +NS(τ)

1− exp

−βN2
MI(τ) +MS(τ)e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
M(τ)




Susceptible nymphs become susceptible adults

AS(τ +
3

11
) = NS(τ +

2

11
)

(
e
−βN

2

MI (τ+ 2
11 )

M(τ+ 2
11 )

)

= NS(τ) e−
3α3

4 exp

−βN2
MI(τ) +MS(τ)e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
M(τ)


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4. Mice die

MS(τ +
4

11
) = MS(τ +

3

11
)e−

µ
4

= MS(τ)e−
µ
4 e−

ψω
4 e
−βM

2

NI (τ)

N(τ)

MI(τ +
4

11
) = MI(τ +

3

11
)e−

µ
4

= MI(τ)e−
µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
MV (τ +

4

11
) = MV (τ +

3

11
)e−

µ
4

= MV (τ)e−
µ
4 +MS(τ)e−

µ
4 (1− e−

ψω
4 )

5. Mice are born

MS(τ +
5

11
) = MS(τ +

4

11
) +

ΛM
4

= MS(τ)e−
µ
4 e

−ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4

6. Larvae hatch

LS(τ +
6

11
) = LS(τ +

5

11
) + ΛT = ΛT

7. Larvae die

LS(τ +
7

11
) = LS(τ +

6

11
)e−

α1
4 = e−

α1
4 ΛT

8. Larvae feed, possibly get infected, and transition to nymphs

NS(τ +
8

11
) = LS(τ +

7

11
)

(
e
−βL

4

MI (τ+ 7
11 )

M(τ+ 7
11 )

)

= ΛT e
−α1

4 exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4


NI(τ +

8

11
) = LS(τ +

7

11
)

(
1− e

−βL
4

MI (τ+ 7
11 )

M(τ+ 7
11 )

)

= ΛT e
−α1

4

1− exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4




27



9. Nymphs die

NS(τ +
9

11
) = NS(τ +

8

11
)e−

3α2
4

= ΛT e
− (α1+3α2)

4 exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4


NI(τ +

9

11
) = NI(τ +

8

11
)e−

3α2
4

= ΛT e
− (α1+3α2)

4

1− exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4




10. Mice die

MS(τ +
10

11
) = MS(τ +

9

11
)e−

3µ
4

= MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4
e−

3µ
4

MI(τ +
10

11
) = MI(τ)e−µ +MS(τ)e−µe−

ψω
4 (1− e−

βM
2

NI (τ)

N(τ) )

MV (τ +
10

11
) = MV (τ)e−µ +MS(τ)e−µ(1− e−

3µ
4 )

11. Mice are born

MS(τ + 1) = MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4
e−

3µ
4 +

3ΛM
4

= MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4

(e−
3µ
4 + 3)

12. Final equations

NI(τ + 1) = ΛT e
− (α1+3α2)

4

1− exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4




NS(τ + 1) = ΛT e
− (α1+3α2)

4 exp

−βL4
MI(τ)e−

µ
4 +MS(τ)e−

µ
4 e−

ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
e−

µ
4M(τ) + ΛM

4



28



MS(τ + 1) = MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4

(e−
3µ
4 + 3)

MI(τ + 1) = MI(τ)e−µ +MS(τ)e−µe−
ψω
4

(
1− e−

βM
2

NI (τ)

N(τ)

)
MV (τ + 1) = MV (τ)e−µ +MS(τ)e−µ(1− e−

ψω
4 )

A.3 Demographic and disease-free equilibrium values

1. Total mouse population constant year-to-year

M(τ) = MS(τ + 1) +MI(τ + 1) +MV (τ + 1)

= MS(τ)e−µe−
ψω
4 e
−βM

2

NI (τ)

N(τ) +
ΛM
4

(e−
3µ
4 + 3)+

MI(τ)e−µ +MS(τ)e−µe−
ψω
4

(
1− e−

βM
2

NI (τ)

NS(τ)+NS(τ)

)
+

MV (τ)e−µ +MS(τ)e−µ
(

1− e−
ψω
4

)
M(τ) = e−µ

(
M(τ) +

Λm
4
e
µ
4 +

3

4
eµΛM

)
Equilibrium solution : M(τ) =

ΛM
4

e
−3µ

4 + 3

1− e−µ

2. Total nymph population constant year-to-year

N(τ) = NS(τ + 1) +NI(τ + 1)

= ΛT e
− (α1+3α2)

4

e
−βL

4

MI (τ)e
−µ

4 +MS(τ)e
−µ

4 e
−ψω

4

1−e
−βM

2
NI (τ)
N(τ)


e
−µ

4 [MI (τ)+MS(τ)+MV (τ)]+
ΛM

4



+ ΛT e
− (α1+3α2)

4

1− e
−βL

4

MI (τ)e
−µ

4 +MS(τ)e
−µ

4 e
−ψω

4

1−e
−βM

2
NI (τ)
N(τ)


e
−µ

4 [MI (τ)+MS(τ)+MV (τ)]+
ΛM

4



= ΛT e
− (α1+3α2)

4
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3. Disease-free equilibrium

with vaccination

NI(τ) = 0

NS(τ) = ΛT e
− (α1+3α2)

4

MI(τ) = 0

MS(τ) =
ΛM
4

(
e

−3µ
4 + 3

)
(

1− e−µ−
ψω
4

)
MV (τ) =

ΛM
4

(
e
µ
4 + 3eµ

)(
1− e

ψω
4

)
(−1 + eµ)

(
−1 + eµ+ψω

4

)

without vaccination

NI(τ) = 0

NS(τ) = ΛT e
− (α1+3α2)

4

MI(τ) = 0

MS(τ) =
ΛM
4

(
e

−3µ
4 + 3

)
(1− e−µ)

MV (τ) = 0

A.4 Derivation of RC

We begin by decomposing the Jacobian matrix evaluated at the DFE as follows:

J =

[
F + T O
A C

]
where F + T is the 2 × 2 submatrix relating the NI and MI compartments, O is the 2 × 1 zero

matrix, A is a 1× 2 matrix, and C is the 1× 1 matrix
[
e−µ−

ψω
4

]
. F consists of all terms relating

to new infections and T consists of all other terms in each matrix entry:

F =


βMβL

8
(3e−

µ
4 +e−µ)e−

ψω
4

(1−e−µ−
ψω
4 )

(1−e−µ)
(1+3e−µ/4)

e−µ
e−

(α1+3α2)
4 (1−e−µ)βLΛT

(3e−µ+e−3µ/4)ΛM

βMΛM
8ΛT

(3e−
µ
4 +e−µ)e−

3µ
4 −ψω

4

(1−e−µ−
ψω
4 )e−

(α1+3α2)
4

0


and T = e−µ

(
0 0
0 1

)
.

As with the full Jacobian, the matrix F +T is singular as well. Let F =
(
ka kb
a 0

)
and T =

(
0 0
0 b

)
.

We can use these matrices to calculate the next-generation matrix Q and an expression for RC .

Q = F (I2×2 − T )−1 =

[
ka kb

1−b
a 0

]
with eigenvalues λ1,2 =

{
1

2

(
ka±

√
(ka)2 +

4(ka)b

1− b

)}
,

so that

RC =
1

2

(
ka+

√
(ka)2 +

4(ka)b

1− b

)
;
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since, from (4), ka = r(1− e−µ), this simplifies to

RC =
1

2

(
r(1− e−µ) +

√
r2(1− e−µ)2 + 4re−µ

)
.

Since e−µ−
ψω
4 , the spectral radius of C, is always between 0 and 1, RC provides a stability condition

for the disease-free equilibrium. If RC < 1, the equilibrium is stable. Otherwise, it is unstable.

A.5 Derivation of equilibrium condition

The equilibrium versions of system (3) are as follows:

M∗I = M∗I e
−µ + (M0 −M∗V −M∗I )e−µe−

ψω
4

(
1− e−

βM
2

N∗
I

N0

)
M∗V = M∗V e

−µ + (M0 −M∗V −M∗I )e−µ(1− e−
ψω
4 )

N∗I = N0

1− exp

−βL4
M∗I e

−µ
4 + (M0 −M∗V −M∗I )e−

µ
4 e−

ψω
4

(
1− e−

βM
2

N∗
I

N0

)
e−

µ
4M0 + ΛM

4




Solving the second equation for M∗V in terms of M∗I .

M∗V = M∗V e
−µ + (M0 −M∗V −M∗I )e−µ(1− e−

ψω
4 )

M∗V (M∗I ) =

(
−1 + e

ψω
4

)
(M0 −M∗I )(

−1 + eµ+ψω
4

)
Solving the first equation for M∗I in terms of N∗I .

M∗I = M∗I e
−µ + (M0 −M∗V −M∗I )e−µe−

ψω
4

(
1− e−

βM
2

N∗
I

N0

)

M∗I (N∗I ) =

(
−1 + e

N∗
I β

2N0

)
M0

−1 + e
N∗
I
β

2N0
+µ+ψω

4

Solving the third equation in terms of N∗I .

N∗I = N0

1− exp

−βL4
M∗I e

−µ
4 + (M0 −M∗V −M∗I )e−

µ
4 e−

ψω
4

(
1− e−

βM
2

N∗
I

N0

)
e−

µ
4M0 + ΛM

4




G(N∗I ) = ln

(
1−

N∗I
N0

)
+

βLM0e
−µ
4 e−

ψω
4

4
(
e

−µ
4 M0 + ΛM

4

)
 1− e

−βM
2

N∗
I

N0

1− e−µe
−ψω

4 e
−βM

2

N∗
I

N0

 = 0
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A.6 Parameter estimation

• Calculation of α1, α2, α3: Using data from literature, we used survival proportions of 0.05,
0.1, and 0.2 between each stage of the tick life cycle [36] and calculated the α values based
on the proportions of death that we considered in our model.

α1: Egg to larva

e−
α1
4 = 0.05

−α1

4
= ln(0.05)

α1 = −4ln(0.05)

= 11.98/yr

α2: Larva to nymph

e−
3α2

4 = .1

α2 = −4

3
ln(0.1)

= 3.07/yr

α3: Nymph to adult

e−
α3
2 = 0.2

α3 = 2ln(0.2)

= 3.22/yr

• Calculation of µ: From literature, we found that the natural death rate of mice was .012/day.
Thus, we multiplied by 365 to obtain the yearly value of 4.38/year.

• Calculation of ΛM : Using M(τ) from our equilibrium solution in Appendix A.3 and the
chosen value for the total mice population M(τ)= 50, along with µ = 4.38/yr, we have

50 =
ΛM
4

e
−3(4.38)

4 + 3

1− e−4.38

and thus ΛM = 65.02.

• Calculation of ΛT : Using N(τ) from our equilibrium solution in Appendix A.3 and the
chosen value for the total nymph population N(τ) = 1000, along with α1 = 11.98/yr and
α2 = 3.07/yr, we have

1000 = ΛT e
− (11.98+3·3.07)

4

and thus ΛT = 1.998 x 105.

• Estimation of ω: We obtained this value from a study that evaluated vaccines in mice,
specifically ones that included the same surface protein that we looked into for this study and
corresponded with the field trial that we referenced throughout [29, 35]. Though the paper
had multiple values for effectiveness, we used the ω that corresponded to 100 ng vaccine; this
value was presented as a proportion and thus no conversion of units was needed.

• Calculation of x: The cost of increasing the vaccination rate by 1/day, is estimated by analysis
of field data from a vaccine field trial [29]. The following data points were used.

1. White-Footed mouse captures
We took data from Table 1: Number of White-Foot Mouse (WFM) Captures in the
Field, recreated below.
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Study Year Unique WFM Captured Nights of Trap Use Total WFM Captures WFM Trapability
2007 700 9472 6043 8.63
2008 240 13824 1647 6.86
2009 716 26112 5399 7.75
2010 877 27136 3806 4.83
2011 1258 24064 6078 4.83

Overall 3791 100608 22973 6.48

2. Plots per year
The field trial also used 64 traps per 1.1 hectare plot for distributing vaccines or as
controls and used the following number of plots every year.

Year 2007 2008 2009 2010 2011

Plots Used 4 5 7 7 7

Using this data we construct the following equation for bait-box contact rate in a year. Due
to the high average captures per mouse we assume that the unique number of mice captured
provides a good estimate to the number of mice in all the plots.

B(t) =
Total WFM Captures

Nights of Trap Use
∗ 64

Number of Plots Used

Unique WFM Captured

We average B(t) across the five study years to obtain BMean = .1366 per day. The study
achieved successful vaccination in a mouse after approximately 5 captures so we estimate the

study’s vaccination rate, ψ =
BMean

5
= .02732/day = 9.9718/year. We assume the cost of

a bait box distributing vaccine to be equal to a bait box distributing acaricide which are on
average priced at $50 per box per year [13]. The cost to vaccinate 1.1 hectares at a rate

ψ = 9.9718/yr is calculated by
$50 ∗ 64

year
=

$3200

year
. We then solve for x:

CV accination = x ∗ ψ
3200 = x · 9.718

x = $329.29.

• Calculation of θ: Using values from a study on health care costs of Lyme disease, including
Post-Treatment Lyme Disease Syndrome (PTLDS), we used the following equation [1]:

θ =
health care costs
for an acute case of Lyme disease

+
probability of
developing PTLDS

∗ average yearly
cost of PTLDS

= $2968 + 0.15($3798)

= $3537.70

The probability of 0.15 was taken from the same source as an average of the range of proba-
bilities of developing PTLDS (10%-20%).

• Calculation of ρ: The source cites the probability of Lyme disease after a tick bite to be from
0.012 to 0.05[18]. The center of this range gives 0.031 for our ρ value.
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