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SCEPTRE

Photon/Electron Radiation Transport

▶ Electrical components suceptible to damage
from photon/electron radiation

▶ Example: Protection of sensors and
processors on satellites requires radiation
transport modeling to allocate sufficient
shielding

▶ SCEPTRE (Sandia’s Computational Engine
for Particle Transport for Radiation Effects)
models photon/electron radiation transport
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SCEPTRE

Boltzmann Transport Equation

Boltzmann transport equation models particle flux ψ(r ,E ,Ω) (density of particles)

[Ω · ∇+ σt(r ,E )]ψ(r ,E ,Ω) = Q(r ,E ,Ω) +

∫ ∫
σs(r ,E

′ → E ,Ω′ → Ω)ψ(r ,E ′,Ω′)dE ′dΩ′

▶ Ω · ∇: Particle streaming
▶ σt(r ,E ): Total cross-section

(losses due to absoprtion and
scattering)

▶ Q(r ,E ,Ω): Particle sources

▶ σs(r ,E
′ → E ,Ω′ → Ω): Scattering

cross-section (Particles scattering from
(E ′,Ω′) to (E ,Ω))

SCEPTRE solves Boltzmann equation using a deterministic transport algorithm
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SCEPTRE

SCEPTRE Solver Approach

SCEPTRE Transport Algorithm
▶ Resolves loops in transport graphs
▶ Can solve transport on unstructured

2D and 3D meshes

SCEPTRE Discretizations
▶ Space: Finite element method (FEM)
▶ Angle: Discrete ordinates
▶ Energy: Multigroup, linear FEM
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SCEPTRE

Boltzmann-CSD Equation

Additionally models “soft” scattering that only changes particle energy:

[Ω ·∇+σt(r ,E )]ψ(r ,E ,Ω) =
∂(Sψ)

∂E
+Q(r ,E ,Ω)+

∫ ∫
σs(r ,E

′ → E ,Ω′ → Ω)ψ(r ,E ′,Ω′)dE ′dΩ′

Continuous slowing down (CSD) scattering cross-section given by stopping power S

Two approaches to express energy derivative:
1. Approximate CSD by adjusting σs multigroup approximation

▶ Uses same solver formulation as Boltzmann transport equation

2. FEM for energy discretization (New Approach):
▶ Allows direct computation of energy derivatives, requires verification
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Code Verification

Discretization Error Convergence

Continuous equations are numerically discretized to discretization size h

r(u) = 0 → rh(uh) = 0

Discretization generally introduces error

eh = u − uh ̸= 0

Error should converge to zero as discretization is refined

lim
h→0

eh → 0

Error norm should decrease at specific rate p

∥eh∥ ≤ Chp

Problem: Measuring error requires a known solution
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Code Verification

Method of Manufactured Solutions (MMS)

Approach
1. Manufacture arbitrary solution: uM
2. Insert manufactured solution into continuous equations to get residual term

r(uM) ̸= 0

3. Set discretized equations equal to residual term and solve

rh(uh) = r(uM)

4. We expect
uh → uM

Error can now be computed since solution is known
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Code Verification

Finite-Difference Example

Consider Laplace equation : r(u) =
∂2u

∂x2
= 0

Discretize with finite differences:
∂2u

∂x2
≈ rh(uh) =

ui+1 − 2ui + ui−1

h2

Manufacture arbitrary solution: uM(x) = c0 + c1x + c2x
2

Compute residual term: r(uM) = 2c2
Set discretized equations equal to residual term and solve:

rh(uh) =
∂2uM
∂x2

→ ui+1 − 2ui + ui−1

h2
= 2c2

Two cases for error:
▶ Exact: If c2 = 0, then ∥uh − uM∥ = 0 for all h
▶ Inexact: If c2 ̸= 0, then ∥uh − uM∥ ≤ Ch2 for some C > 0
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MMS Formulation

Manufactured Solutions and Error Norms

Manufacture a solution ψM(r ,E ,Ω) = g(E )f (r ,Ω) and use 2 cases for g(E ):
1. Exact: g(E ) = c0 + c1E

SCEPTRE error should be near-zero (linear FEM)

2. Inexact: g(E ) = c0 + c1E + c2E
2 + c3E

3 + c4exp(c5E )

SCEPTRE error should be O(h2E )

Compute relative error with L2 and L∞ norms:

e2(ψ̃, ψ) =
∥ψ̃ − ψ∥2
∥ψ∥2

∥ψ∥2 =

√∫
A

∫ Emax

Emin

∫
4π

ψ2(r ,E ,Ω)dΩdEdr

e∞(ψ̃, ψ) =
∥ψ̃ − ψ∥∞
∥ψ∥∞

∥ψ∥∞ = max
(r ,E ,Ω)

|ψ(r ,E ,Ω)|
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MMS Formulation

Energy Discretization

▶ Test both uniform and non-uniform
energy meshes

▶ Non-uniform
▶ Non-smooth meshes can disrupt

convergence
▶ Generate non-uniform meshes with

sinusoidal perturbation
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MMS Formulation

Manufactured Cross-Sections

Cross-sections must also be refined with energy mesh

▶ Define σa(E ), S(E ), σs(E
′ → E ′) to be

3rd order polynomials
▶ Define scattering width w where
σs(E

′ → E ) decreases linearly to
σs(E

′ → E ′ ± w) = 0

σs(E
′ → E ) = max

(
m(E )

(
1− |E ′ − E |

w

)
, 0

)
▶ Multigroup cross-sections computed

exactly
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Results

Exact Tests

Manufacture solutions for Boltzmann-CSD using exactly discretized fluxes on all spatial
meshes to test for any joint spatial/energy errors

Manufactured Solution Form

ψM(r ,E ,Ω) = (c0 + c1E )f (r ,Ω)

Test multiple c0, c1 ∈ [0, 2] using 2 and 4 energy groups for each spatial mesh
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Results

Uniform Energy Meshes with 1D Spatial Meshes

▶ Test convergence by doubling number
of energy groups (NG ) each step

▶ Confirm expected energy convergence
observed with all spatial meshes

▶ Energy discretization shows expected
convergence for 1D spatial meshes

2 4 8 16 32 64 128 256
NG

10 -6

10 -4

10 -2

10 0

R
el
at

iv
e

E
rr

or

edge2, L2

edge2, L1

edge3, L2

edge3, L1

O(h2)

14 / 22



1

UNCLASSIFIED UNLIMITED RELEASE

Results

Uniform Energy Meshes with 2D Spatial Meshes

▶ Energy discretization shows expected
convergence for 2D spatial meshes

2 4 8 16 32 64 128 256
NG

10 -6

10 -4

10 -2

10 0

R
el
at

iv
e

E
rr

or

tri3, L2

tri3, L1

tri6, L2

tri6, L1

quad4, L2

quad4, L1

quad8, L2

quad8, L1

O(h2)

15 / 22



1

UNCLASSIFIED UNLIMITED RELEASE

Results

Uniform Energy Meshes with 3D Spatial Meshes

▶ Energy discretization shows expected
convergence for 3D spatial meshes

▶ All cases for uniform energy meshes
show expected convergence
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Results

Non-Uniform Energy Meshes with 1D Spatial Meshes and only CSD Scattering

▶ Check convergence for non-uniform
energy meshes without scattering

▶ Energy discretization shows expected
convergence for 1D spatial meshes
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Results

Non-Uniform Energy Meshes with 2D Spatial Meshes and only CSD Scattering

▶ Energy discretization shows expected
convergence for 2D spatial meshes
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Results

Non-Uniform Energy Meshes with 3D Spatial Meshes and only CSD Scattering

▶ Energy discretization shows expected
convergence for 3D spatial meshes

▶ All cases for non-uniform energy
meshes without scattering verified
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Results

Non-Uniform Energy Meshes with Scattering

▶ Vary scattering magnitude (s) and
nonuniform perturbation magnitude
(m) with edge2 spatial mesh

▶ Non-decaying error proportional to
smNG

▶ Flexibility of MMS helps clarify
implementation errors in addition to
identifying them
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Conclusions

▶ SCEPTRE is a deterministic photon/electron radation transport code
▶ SCEPTRE discretizes energy with linear finite elements to solve more complex

transport cases
▶ Code verification assesses whether numerical discretizations are implemented

correctly
▶ MMS sets arbitrary functions as solutions to check exactness and convergence
▶ SCEPTRE shows anticipated convergence for uniform energy meshes with

scattering and non-uniform energy meshes without scattering
▶ Verification of linear finite element scattering treatment on non-uniform energy

meshes is ongoing
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Future Work

Improving Credibility of Boltzmann-CSD Implementation

▶ Investigate convergence issues for scattering on non-uniform energy meshes
▶ Verify using physical cross-sections computed by CEPXS
▶ Check Boltzmann-CSD model against electron beam experimental data (validation)
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