

Verification of the Finite Element Method Energy Discretization in SCEPTRE

Harley Hanes, Brian Freno, Shawn Pautz

ANS 2025 Annual Meeting, Chicago, IL

June 17, 2025

Outline

Background

- ▶ Photon/Electron Transport and SCEPTRE
- ▶ Code Verification Using Method of Manufactured Solutions (MMS)

Verification Approach

- ▶ Manufactured Solutions
- ▶ Energy Discretizations and Cross-Sections

Verification Results

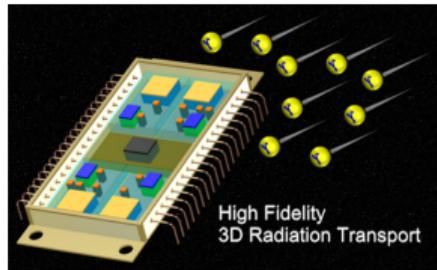
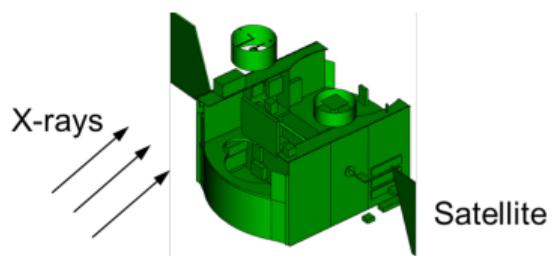
- ▶ Exact Verification
- ▶ Inexact Verification

Conclusions and Future Work

SCEPTRE

Photon/Electron Radiation Transport

- ▶ Electrical components susceptible to damage from photon/electron radiation
- ▶ **Example:** Protection of sensors and processors on satellites requires radiation transport modeling to allocate sufficient shielding
- ▶ SCEPTRE (Sandia's Computational Engine for Particle Transport for Radiation Effects) models photon/electron radiation transport



SCEPTRE

Boltzmann Transport Equation

Boltzmann transport equation models particle flux $\psi(\mathbf{r}, E, \Omega)$ (density of particles)

$$[\Omega \cdot \nabla + \sigma_t(\mathbf{r}, E)]\psi(\mathbf{r}, E, \Omega) = Q(\mathbf{r}, E, \Omega) + \int \int \sigma_s(\mathbf{r}, E' \rightarrow E, \Omega' \rightarrow \Omega)\psi(\mathbf{r}, E', \Omega')dE'd\Omega'$$

- ▶ $\Omega \cdot \nabla$: Particle streaming
- ▶ $\sigma_t(\mathbf{r}, E)$: Total cross-section (losses due to absorption and scattering)
- ▶ $Q(\mathbf{r}, E, \Omega)$: Particle sources
- ▶ $\sigma_s(\mathbf{r}, E' \rightarrow E, \Omega' \rightarrow \Omega)$: Scattering cross-section (Particles scattering from (E', Ω') to (E, Ω))

SCEPTRE solves Boltzmann equation using a deterministic transport algorithm

SCEPTRE

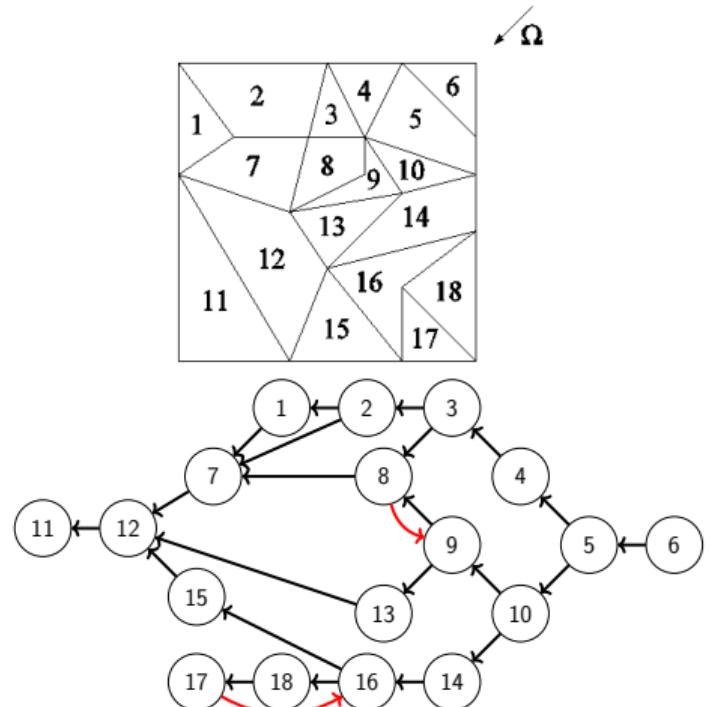
SCEPTRE Solver Approach

SCEPTRE Transport Algorithm

- ▶ Resolves loops in transport graphs
- ▶ Can solve transport on unstructured 2D and 3D meshes

SCEPTRE Discretizations

- ▶ Space: Finite element method (FEM)
- ▶ Angle: Discrete ordinates
- ▶ Energy: Multigroup, **linear FEM**



SCEPTRE

Boltzmann-CSD Equation

Additionally models “soft” scattering that only changes particle energy:

$$[\boldsymbol{\Omega} \cdot \nabla + \sigma_t(\mathbf{r}, E)]\psi(\mathbf{r}, E, \boldsymbol{\Omega}) = \frac{\partial(S\psi)}{\partial E} + Q(\mathbf{r}, E, \boldsymbol{\Omega}) + \int \int \sigma_s(\mathbf{r}, E' \rightarrow E, \boldsymbol{\Omega}' \rightarrow \boldsymbol{\Omega})\psi(\mathbf{r}, E', \boldsymbol{\Omega}')dE'd\boldsymbol{\Omega}'$$

Continuous slowing down (CSD) scattering cross-section given by stopping power S

Two approaches to express energy derivative:

1. Approximate CSD by adjusting σ_s multigroup approximation
 - ▶ Uses same solver formulation as Boltzmann transport equation
2. FEM for energy discretization (**New Approach**):
 - ▶ Allows direct computation of energy derivatives, **requires verification**

Code Verification

Discretization Error Convergence

Continuous equations are numerically discretized to discretization size h

$$r(u) = 0 \quad \rightarrow \quad r_h(u_h) = 0$$

Discretization generally introduces error

$$e_h = u - u_h \neq 0$$

Error should converge to zero as discretization is refined

$$\lim_{h \rightarrow 0} e_h \rightarrow 0$$

Error norm should decrease at specific rate p

$$\|e_h\| \leq Ch^p$$

Problem: Measuring error requires a known solution

Code Verification

Method of Manufactured Solutions (MMS)

Approach

1. Manufacture arbitrary solution: u_M
2. Insert manufactured solution into continuous equations to get residual term

$$r(u_M) \neq 0$$

3. Set discretized equations equal to residual term and solve

$$r_h(u_h) = r(u_M)$$

4. We expect

$$u_h \rightarrow u_M$$

Error can now be computed since solution is known

Code Verification

Finite-Difference Example

Consider Laplace equation : $r(u) = \frac{\partial^2 u}{\partial x^2} = 0$

Discretize with finite differences: $\frac{\partial^2 u}{\partial x^2} \approx r_h(u_h) = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$

Manufacture arbitrary solution: $u_M(x) = c_0 + c_1x + c_2x^2$

Compute residual term: $r(u_M) = 2c_2$

Set discretized equations equal to residual term and solve:

$$r_h(u_h) = \frac{\partial^2 u_M}{\partial x^2} \rightarrow \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} = 2c_2$$

Two cases for error:

- ▶ **Exact:** If $c_2 = 0$, then $\|u_h - u_M\| = 0$ for all h
- ▶ **Inexact:** If $c_2 \neq 0$, then $\|u_h - u_M\| \leq Ch^2$ for some $C > 0$

MMS Formulation

Manufactured Solutions and Error Norms

Manufacture a solution $\psi_M(\mathbf{r}, E, \Omega) = g(E)f(\mathbf{r}, \Omega)$ and use 2 cases for $g(E)$:

1. **Exact:** $g(E) = c_0 + c_1 E$

SCEPTRE error should be near-zero (linear FEM)

2. **Inexact:** $g(E) = c_0 + c_1 E + c_2 E^2 + c_3 E^3 + c_4 \exp(c_5 E)$

SCEPTRE error should be $\mathcal{O}(h_E^2)$

Compute relative error with L^2 and L^∞ norms:

$$e_2(\tilde{\psi}, \psi) = \frac{\|\tilde{\psi} - \psi\|_2}{\|\psi\|_2}$$

$$\|\psi\|_2 = \sqrt{\int_A \int_{E_{\min}}^{E_{\max}} \int_{4\pi} \psi^2(\mathbf{r}, E, \Omega) d\Omega dE d\mathbf{r}}$$

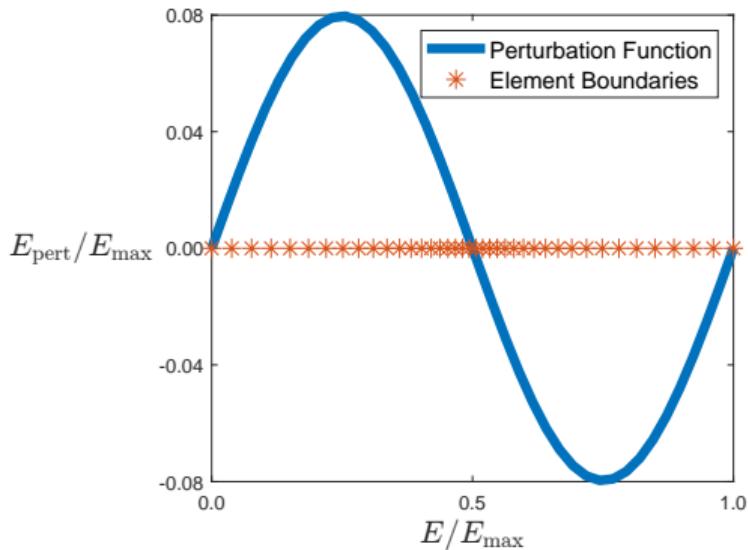
$$e_\infty(\tilde{\psi}, \psi) = \frac{\|\tilde{\psi} - \psi\|_\infty}{\|\psi\|_\infty}$$

$$\|\psi\|_\infty = \max_{(\mathbf{r}, E, \Omega)} |\psi(\mathbf{r}, E, \Omega)|$$

MMS Formulation

Energy Discretization

- ▶ Test both uniform and non-uniform energy meshes
- ▶ Non-uniform
 - ▶ Non-smooth meshes can disrupt convergence
 - ▶ Generate non-uniform meshes with sinusoidal perturbation



MMS Formulation

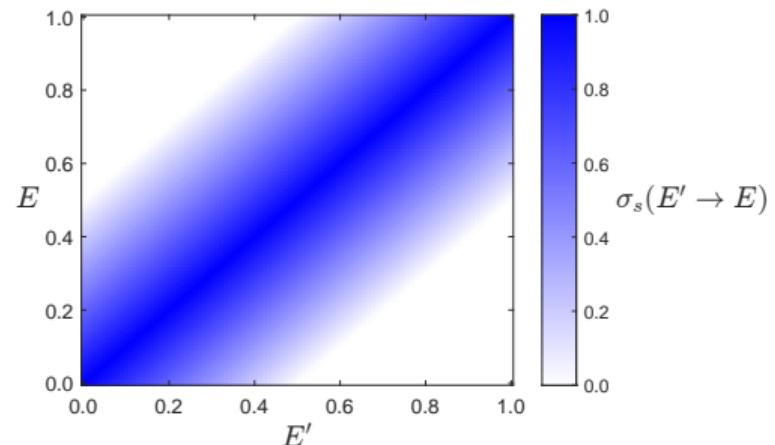
Manufactured Cross-Sections

Cross-sections must also be refined with energy mesh

- ▶ Define $\sigma_a(E)$, $S(E)$, $\sigma_s(E' \rightarrow E')$ to be 3rd order polynomials
- ▶ Define scattering width w where $\sigma_s(E' \rightarrow E)$ decreases linearly to $\sigma_s(E' \rightarrow E' \pm w) = 0$

$$\sigma_s(E' \rightarrow E) = \max \left(m(E) \left(1 - \frac{|E' - E|}{w} \right), 0 \right)$$

- ▶ Multigroup cross-sections computed exactly



Scattering cross-section with
 $\sigma_s(E' \rightarrow E') = 1$ and $w = 1/2$

Results

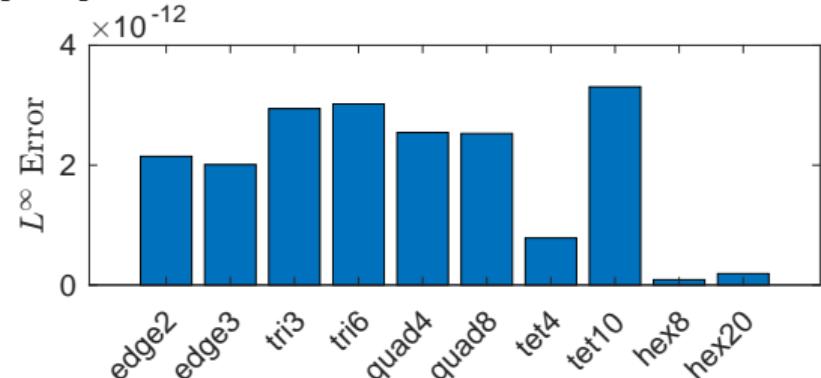
Exact Tests

Manufacture solutions for Boltzmann-CSD using exactly discretized fluxes on all spatial meshes to test for any joint spatial/energy errors

Manufactured Solution Form

$$\psi_M(\mathbf{r}, E, \Omega) = (c_0 + c_1 E) f(\mathbf{r}, \Omega)$$

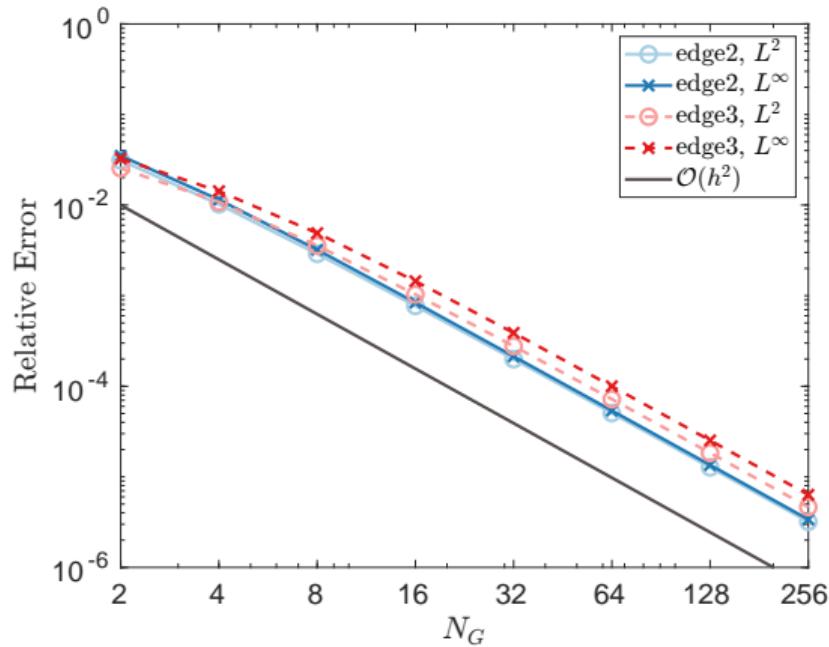
Test multiple $c_0, c_1 \in [0, 2]$ using 2 and 4 energy groups for each spatial mesh



Results

Uniform Energy Meshes with 1D Spatial Meshes

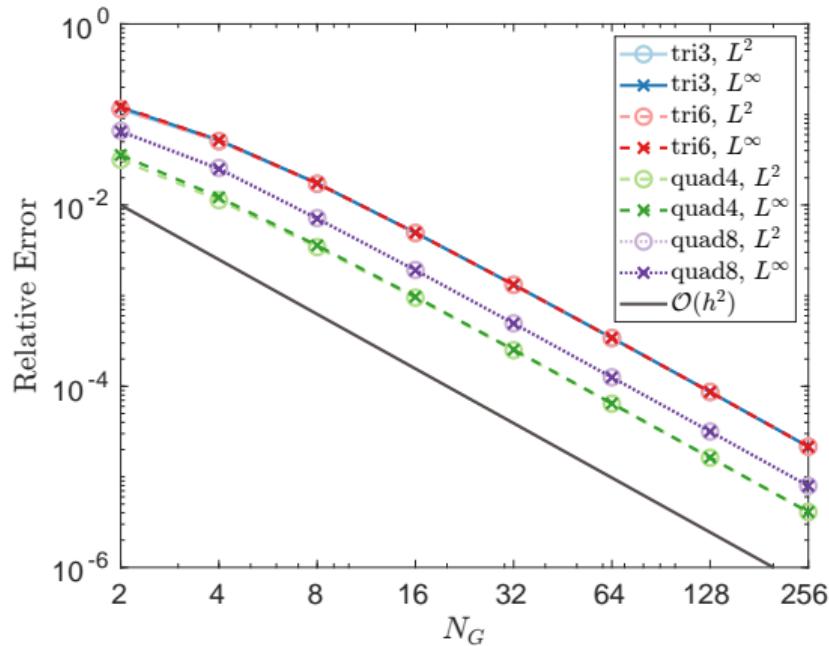
- ▶ Test convergence by doubling number of energy groups (N_G) each step
- ▶ Confirm expected energy convergence observed with all spatial meshes
- ▶ Energy discretization shows expected convergence for 1D spatial meshes



Results

Uniform Energy Meshes with 2D Spatial Meshes

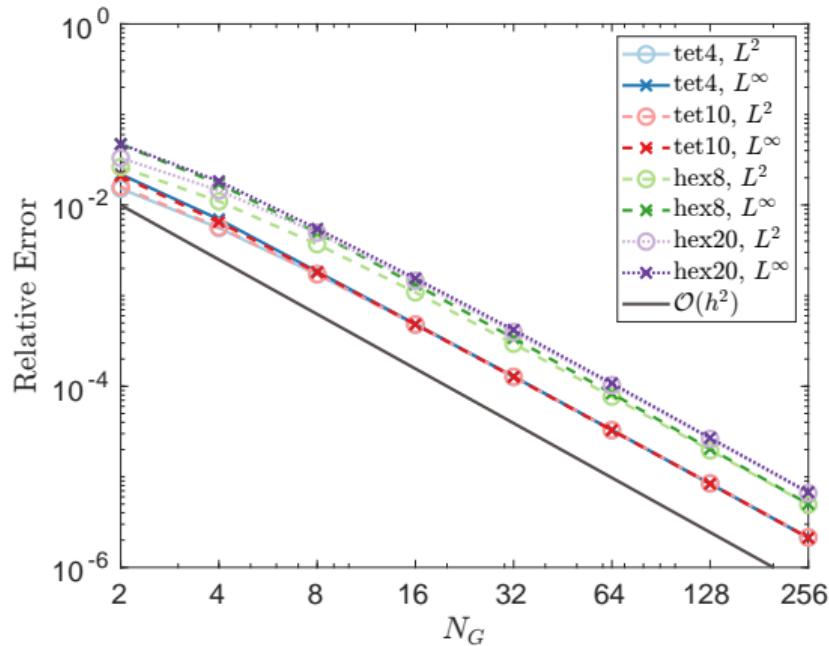
- Energy discretization shows expected convergence for 2D spatial meshes



Results

Uniform Energy Meshes with 3D Spatial Meshes

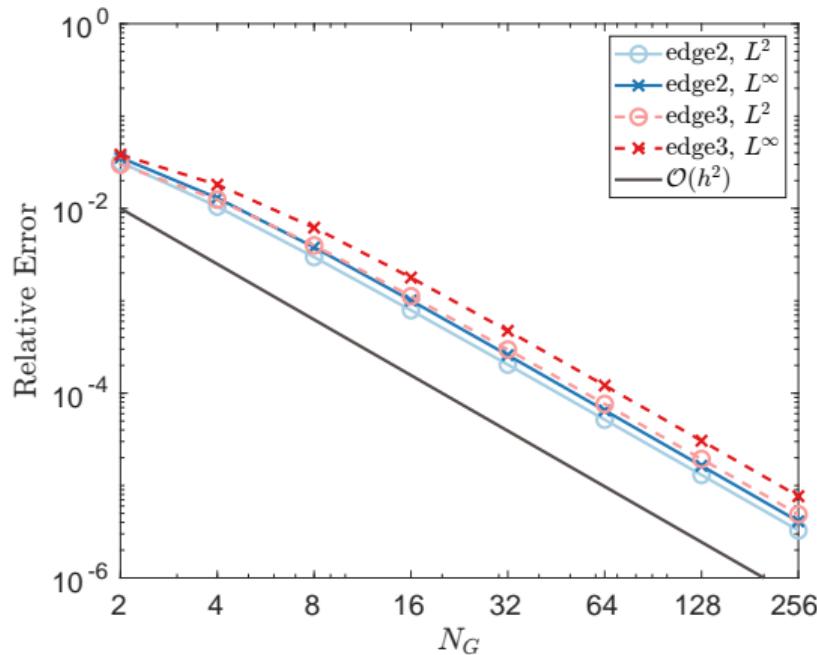
- ▶ Energy discretization shows expected convergence for 3D spatial meshes
- ▶ All cases for uniform energy meshes show expected convergence



Results

Non-Uniform Energy Meshes with 1D Spatial Meshes and only CSD Scattering

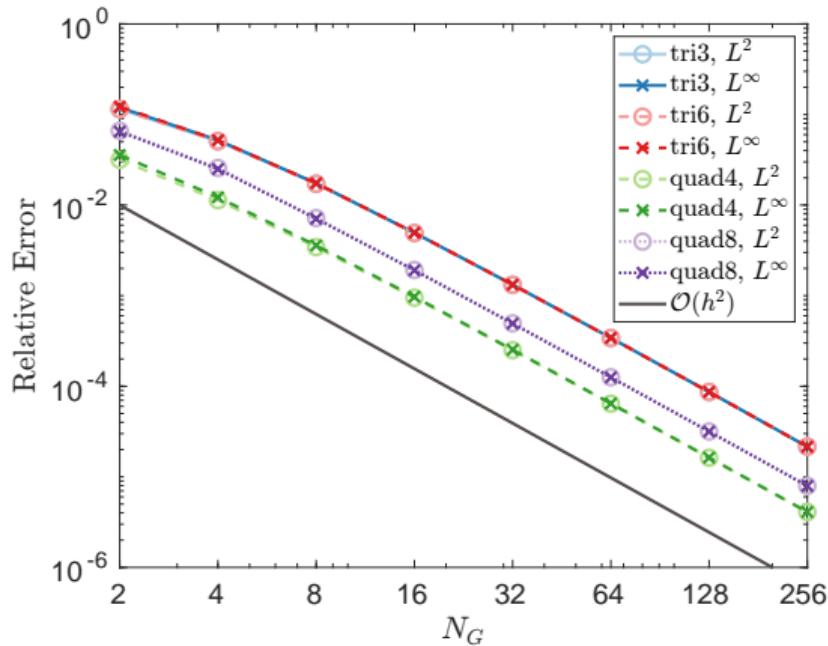
- ▶ Check convergence for non-uniform energy meshes without scattering
- ▶ Energy discretization shows expected convergence for 1D spatial meshes



Results

Non-Uniform Energy Meshes with 2D Spatial Meshes and only CSD Scattering

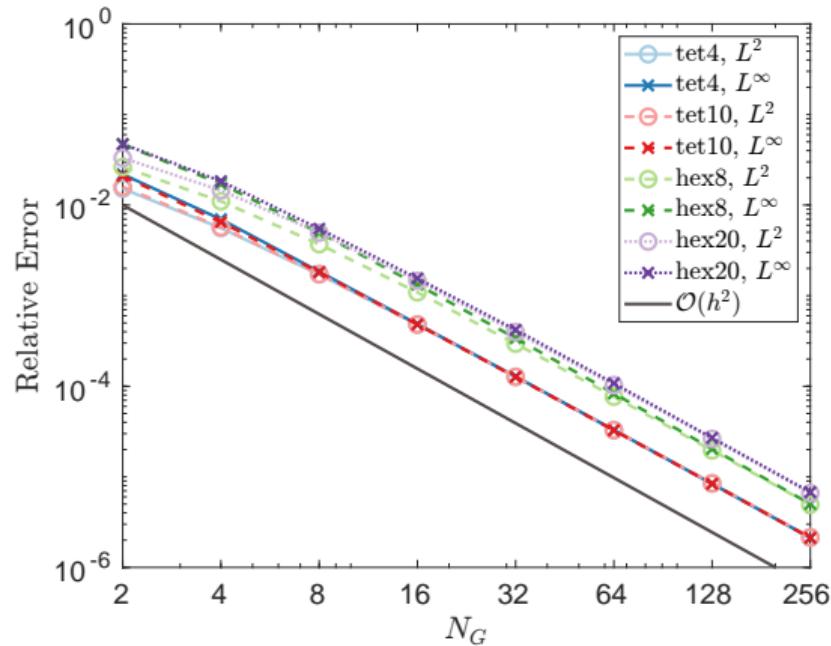
- ▶ Energy discretization shows expected convergence for 2D spatial meshes



Results

Non-Uniform Energy Meshes with 3D Spatial Meshes and only CSD Scattering

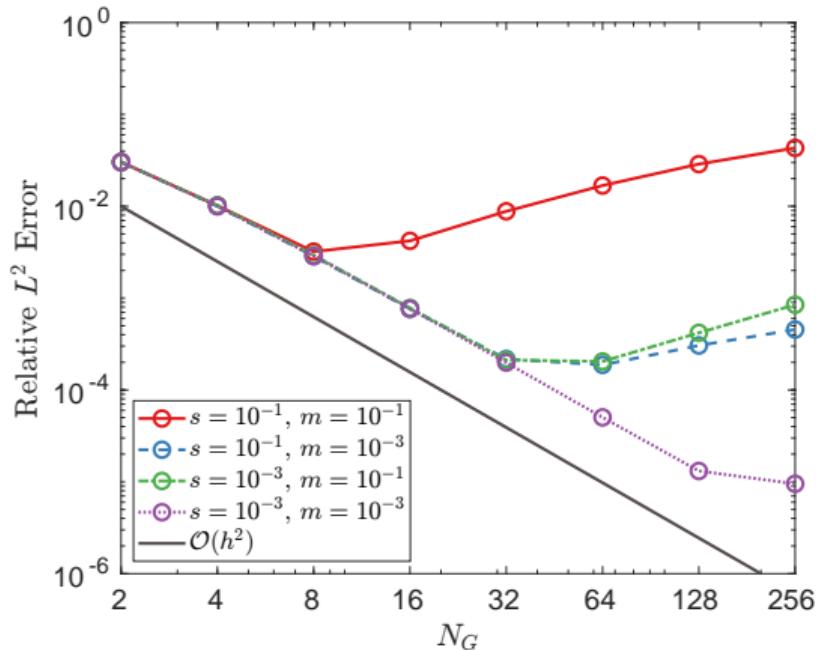
- ▶ Energy discretization shows expected convergence for 3D spatial meshes
- ▶ All cases for non-uniform energy meshes without scattering verified



Results

Non-Uniform Energy Meshes with Scattering

- ▶ Vary scattering magnitude (s) and nonuniform perturbation magnitude (m) with edge2 spatial mesh
- ▶ Non-decaying error proportional to smN_G
- ▶ Flexibility of MMS helps clarify implementation errors in addition to identifying them



Conclusions

- ▶ SCEPTRE is a deterministic photon/electron radiation transport code
- ▶ SCEPTRE discretizes energy with linear finite elements to solve more complex transport cases
- ▶ Code verification assesses whether numerical discretizations are implemented correctly
- ▶ MMS sets arbitrary functions as solutions to check exactness and convergence
- ▶ SCEPTRE shows anticipated convergence for uniform energy meshes with scattering and non-uniform energy meshes without scattering
- ▶ Verification of linear finite element scattering treatment on non-uniform energy meshes is ongoing

Future Work

Improving Credibility of Boltzmann-CSD Implementation

- ▶ Investigate convergence issues for scattering on non-uniform energy meshes
- ▶ Verify using physical cross-sections computed by CEPXS
- ▶ Check Boltzmann-CSD model against electron beam experimental data (validation)

