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Sensitivity analysis for computational fluid dynamics (CFD) simulations is often required

for many applications but complicated by the computational cost of simulation codes. For

many applications, the computational cost of quantifying the simulation’s sensitivity to physical

parameters (e.g., body surface roughness) and hyperparameters (e.g., subiteration convergence

criterion) can be intractable for even a single simulation. Reduced-order modeling significantly

reduces the computational cost of simulating fluid flows by solving on a reduced solution space

informed by prior simulation data. In this work, fluid reduced-order models using boundary

penalties are developed and utilized to quantify flow sensitivity to physical parameters, boundary

conditions, and model hyperparameters. The proposed reduced-order modeling approach

allows sensitivity analysis and uncertainty quantification of boundary conditions and enables

more informed CFD frameworks.

Nomenclature

𝑎 = proper orthogonal decomposition coefficient

𝑏 = boundary penalty term

𝐵 = boundary penalty term integrated matrix

C = reduced-order model constant vector

𝑑 = Morris screening function sensitivity

𝐸𝑘 = integrated kinetic energy

ℓ = relative length of the maximum function axis

𝐿 = reduced-order model linear matrix
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𝑁 = Number of Morris screening parameter samples

𝑀 = Number of POD modes used

M = reduced-order model mass matrix

𝑃 = fluid static pressure

P = reduced-order model pressure vector

𝑄 = reduced-order model nonlinear matrix

R = the real number space

𝑅𝑒 = Reynolds number

𝑆 = physical system dimension

𝑡 = time

𝑢 = fluid velocity vector

𝑣̄ = velocity magnitude

𝑉 = integrated vorticity

𝑊 = quadrature weights

x = position vector of dimension 𝑆

𝛼 = lid cavity velocity boundary coefficient

𝛿 = Dirac delta distribution

Δ = parametric step size

Γ = fluid domain boundary

𝜃 = parameter sample

𝜑 = basis function orientation

𝜙 = proper orthogonal decomposition mode

Φ = complete modal matrix

𝜇 = Morris sensitivity mean

𝜇∗ = Morris sensitivity absolute mean

𝜎 = Morris sensitivity standard deviation

𝜅 = boundary penalty strength

𝜉 = mean-reduction basis function location

𝜔 = vorticity

Ω = fluid domain

BP-POD-ROM = Boundary-Penalized POD-based ROM

CFD = Computational Fluid Dynamics
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DNS = Direct Numerical Simulation

POD = Proper Orthogonal Decomposition

ROM = Reduced-order Model

I. Background and Motivation

Computational fluid dynamics (CFD) is employed in many facets of aerospace engineering. The chaotic nature of

many fluid flows mandates the use of computational methods to quickly quantify flow dynamics and supplement

the information provided by physical experiments. However, for methods quantifying the variation of solutions on

applied configuration-scale problems, particularly sensitivity analysis, even cheaper computational formulations such as

Reynolds-averaged Navier-Stokes (RANS) are often too computationally expensive. For this reason, the development of

reduced-ordered model (ROM) methods, which can adequately quantify solution changes caused by parameter variations

at a significantly reduced computational cost, is a critical goal for improving CFD accuracy and applicability.

Sensitivity analysis quantifies how variability in model outputs, such as velocity or vorticity, is influenced by

variability in model parameters, such as Reynolds number. In aerospace applications, sensitivity analysis has been

employed to quantify the influence of model parameters for atmospheric entry [1–3], commercial aircraft design [4], and

shape optimization [5]. Parameters with high sensitivity may require more accurate measurement or can be adjusted to

improve performance, whereas parameters with low sensitivity may be fixed for model reduction without loss in model

fidelity [6]. An important classification of sensitivity analysis methods is whether they are local – measuring sensitivity

at a single set of parameter values – or global – quantifying sensitivity over an assumed distribution of parameter values.

Local methods are more computationally efficient but cannot determine dependencies over the admissible parameter

space [6]. In this work, we implement Morris screening, a global sensitivity analysis method, and assess its strengths and

weaknesses on a lid-driven cavity test problem [7]. Morris screening is well-established method in sensitivity analysis

of physical models that globally averages local sensitivities to permit quantification of sensitivity across parameter

distributions without the high computational costs of other global methods such as Sobol analysis [8–10].

Sensitivity analysis methods can require thousands of model evaluations, which can render them intractable

for implementation for high-fidelity computational models. However, lower-cost (ROMs) enable sufficiently fast

data throughput and sufficient fidelity for accurate sensitivity analysis. A common method is proper orthogonal

decomposition (POD)-based Galerkin reduced-order modeling (POD-ROM), which projects the governing equations

onto a spanning mode space, thus reducing them to a system of temporal ordinary differential equations [11]. However,

many design-relevant parameters are not explicitly expressed in POD-ROMs, which limits their use for sensitivity

analysis.

In this work, we employ a boundary penalty method with a standard POD-ROM. Boundary penalties have an
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established use in POD-ROMs quantifying boundary information to improve stability [12, 13]. Boundary penalties also

enable explicit control of the ROM-simulated boundary conditions, thereby facilitating sensitivity analysis. Within

conventional wind tunnel- and CFD-centric design cycles, the significance of unavoidable differences in both far- and

near-field boundary conditions are often difficult to study directly. This ROM framework addresses that limitation. Gust

responses [14] and vehicle surface roughness [15] are just two types of parametric and hyperparametric sensitivities that

can be quantified using such a boundary penalty method within the POD-ROM.

We test this methodology using boundary penalties to compute the sensitivity of POD-ROM solutions to boundary

conditions for a 2D regularized lid-driven cavity. We compute the sensitivity of velocity, vorticity, and kinetic energy

when varying boundary conditions between regularized and unregularized. To the authors’ knowledge, this is the first

investigation of an incompressible lid-driven cavity flow’s sensitivity to boundary conditions. Studies investigating

intermediate boundary conditions in viscoelastic lid-driven cavities exist, but we do not derive expected results from

this study due to the large differences in flow characteristics between turbulent incompressible flows and low-Reynolds

number viscous flows [16]. Therefore, we compare our results to studies of streamline characteristics of regularized and

unregularized lid-driven cavities at different Reynolds numbers [17, 18].

We summarize Morris screening sensitivity analysis in Section II.A and derive the incompressible formulation of the

proper orthogonal decomposition-based reduced-order model with boundary penalty, BP-POD-ROM, in Section II.B.

We then provide a brief description of a 2-D regularized lid-driven cavity model selected to test the method in Section

II.C. Finally, we present Morris screening results on the test case, exploring the sensitivity of physical parameters

including Reynolds number and boundary condition compared to model parameters of penalty strength and the mean

decomposition in Section III. We intend as future work testing of our method on recirculating tank models with a larger

parameter space to further determine accuracy for sensitivity analysis and uncertainty quantification.

II. Methodology

A. Morris Screening

We employ Morris screening to compute the sensitivity of a BP-POD-ROM to model parameters. Morris screening

is a one-at-a-time (OAT) quasiglobal sensitivity analysis method, which approximates the local derivatives at parameter

values sampled from an assumed distribution [7]. Morris screening can be used to approximate derivative-based global

sensitivity measures (DGSM), which define sensitivity to be the partial derivative of model outputs to model inputs,

integrated over parameter distributions [6, 19]. Similar to the common alternative approach of Sobol analysis, Morris

screening indices may be used to identify non-influential parameters and parameters with nonlinear or coupled effects

[6, 20]. However, Morris screening is less computationally expensive, less impacted by error in assumed parameter

distributions, and does not require that parameters are independently distributed [6].
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Given a set of 𝑁 parameter samples {𝜃 𝑗 }𝑁
𝑗=1 and a step-size Δ, Morris screening first computes finite-difference

approximations of local sensitivity

𝑑
𝑗

𝑖
=
𝑓 (𝜉, 𝜃 𝑗 + Δ𝑒𝑖) − 𝑓 (𝜉, 𝜃 𝑗 )

Δ
(1)

where 𝑓 is an arbitrary function defined at basis function location 𝜉 and parameter point 𝜃, and 𝑒𝑖 is the unit vector for

parameter 𝑖. Morris screening then computes the sensitivity indices for absolute mean 𝜇∗
𝑖

and standard deviation 𝜎𝑖 .

Formulae for these indices are

𝜇∗𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

|𝑑 𝑗

𝑖
| , 𝜎𝑖 =

√√√
1

𝑁 − 1

𝑁∑︁
𝑗=1

(𝑑 𝑗

𝑖
− 𝜇𝑖)2 (2)

The absolute mean 𝜇∗
𝑖

quantifies the sensitivity magnitude, where parameters with larger 𝜇∗
𝑖

have greater sensitivity over

the sampling region [10]. The absolute mean can be used to identify non-influential parameters which can be fixed

for future calibration and uncertainty quantification. The standard deviation 𝜎𝑖 quantifies the sensitivity variation and

identifies parameters that may have nonlinear or coupled effects on a quantity [10]. Additionally, parameters with large

𝜎𝑖 compared to 𝜇∗
𝑖

may be highly sensitive but only for a small portion of their distribution.

Selection of Δ determines how finely the parameter space is searched around each parameter sample 𝜃 𝑗 . Very small

values provide a finite-difference derivative approximation whereas large values instead quantify large-scale function

variations [6]. We normalize all parameter ranges to [0, 1] before implementing Morris screening for nondimensional

scaling of Δ, assume parameters are uniformly distributed to [0, 1], and use Δ = 10−4. We sample parameters with

quasi-random Sobol samples, which increases the accuracy of Morris screening compared to random sampling [21].

B. POD-ROM with Boundary Penalty

We develop a proper orthogonal decomposition-based reduced-order model with boundary penalty, BP-POD-ROM,

by introducing a penalty term enforcing the boundary condition into a standard reduced-order model. Boundary-penalties

have a well established use in POD-ROMs improving stability of solutions [12, 22]. We follow the POD-ROM derivation

outlined in Ref. [23], using the penalty formulation found in Ref. [12].

We begin with a 2-dimensional incompressible Navier-Stokes system with Dirichlet boundary conditions


𝜕𝑡𝑢

𝑖 + 𝑢 𝑗∇ 𝑗𝑢𝑖 = −∇𝑖𝑃 + 1
𝑅𝑒

∇2𝑢𝑖 𝒙 ∈ Ω = [0, 1]2

𝑢 = 𝑢Γ 𝑥 ∈ Γ = 𝜕Ω

(3)

where 𝑢𝑖 (𝒙, 𝑡) is the velocity in the 𝑖𝑡ℎ direction and 𝑃 is the pressure. To enforce the boundary condition Γ, we define

the boundary penalty term

𝑏𝑖Γ (𝒙, 𝑡; 𝜅) = 𝜅𝛿Γ (𝒙)
(
𝑢𝑖Γ − 𝑢

𝑖
)

(4)
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where 𝛿Γ (𝒙) is the Dirac delta distribution such that,

∫
Ω

𝛿Γ (𝒙)𝑢(𝒙)𝑑𝑥 =
∫
Γ

𝑢(𝒙)𝑑𝑥

Here 𝜅 > 0 determines the the strength of the penalty [12]. We then add the penalty to the Navier-Stokes equations and

construct the penalized system

𝜕𝑡𝑢
𝑖 + 𝑢 𝑗∇ 𝑗𝑢𝑖 = −∇𝑖𝑃 + 1

𝑅𝑒
∇2𝑢𝑖 + 𝑏𝑖Γ (𝒙, 𝑡; 𝜅) 𝒙 ∈ Ω ∪ Γ (5)

To compute the POD-ROM of the penalized system, we decompose the velocity by assuming 𝑢𝑖 = 𝑢𝑖0 + 𝑢
𝑖
𝑑
, where

𝑢𝑖0 (𝒙) is a temporally constant field, often set as the temporal mean of the flowfield, and 𝑢𝑖
𝑑
(𝒙, 𝑡) is the remaining

portions of the flow with homogeneous Dirichlet boundary conditions. We note that POD-ROM solutions can deviate

from the boundary conditions since explicit enforcement of the boundary is not included in POD formulation which

boundary penalties can solve in many circumstances [12, 13]. By separating 𝑢𝑖 into its two subcomponents, we expand

Equation (5) into

𝜕𝑡𝑢
𝑖
𝑑 = −𝑢 𝑗

0∇
𝑗𝑢𝑖0 − 𝑢

𝑗

0∇
𝑗𝑢𝑖𝑑 − 𝑢 𝑗

𝑑
∇ 𝑗𝑢𝑖0 − 𝑢

𝑗

𝑑
∇ 𝑗𝑢𝑖𝑑 − ∇𝑖𝑃 + 1

𝑅𝑒
(∇2𝑢𝑖0 + ∇2𝑢𝑖𝑑) + 𝜅𝛿(𝒙)

(
𝑢𝑖Γ − (𝑢𝑖0 + 𝑢

𝑖
𝑑)
)

(6)

We then expand 𝑢𝑖
𝑑

into a linear modal sum, which separates the spatial and the temporal velocity components:

𝑢𝑖𝑑 (𝒙, 𝑡) = 𝑎𝑛 (𝑡)𝜙
𝑖
𝑛 (𝒙) (7)

Using the modal decomposition, we can expand Equation (6) into 𝑀 – the number of POD modes – differential equations

for modal coefficients. This yields the equation

𝜙𝑖𝑛𝜕𝑡𝑎𝑛 = −𝑎𝑛𝑎𝑚𝜙 𝑗
𝑛∇ 𝑗𝜙𝑖𝑚−∇𝑖𝑃−(𝑢 𝑗

0∇
𝑗𝜙𝑖𝑛+𝜙

𝑗
𝑛∇ 𝑗𝑢𝑖0−

1
𝑅𝑒

∇2𝜙𝑖𝑛)𝑎𝑛−𝑢
𝑗

0∇
𝑗𝑢𝑖0+

1
𝑅𝑒

∇2𝑢𝑖0+𝜅𝛿(x)
(
𝑢𝑖Γ − (𝑎𝑛𝜙𝑖𝑛 + 𝑢𝑖0)

)
(8)

Multiplying Equation (8) by the modal basis {𝜙𝑚}𝑀𝑚=1 and integrating yields the Galerkin weak form for Navier-Stokes.

The resulting temporal differential equations for 𝛼𝑛 (𝑡) can be expressed by the following system

M¤a = a𝑇 [𝑄] a +
(
L0 + 1

𝑅𝑒
L𝑅𝑒 + 𝜅B

)
a + P + C0 + 1

𝑅𝑒
CRe + 𝜅B0 (9)

For a flow with a set of spatial discretization points on the boundary 𝑍 , modal matrix Φ, and boundary quadrature
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weights𝑊 , the formulae for the boundary penalty POD-ROM matrices are

𝐵𝑘𝑛 = −(𝜙𝑖𝑘 , 𝜙
𝑖
𝑛)𝐿2 (Γ1 ) = −

∫
Γ

𝜙𝑥𝑘𝜙
𝑥
𝑛 + 𝜙

𝑦

𝑘
𝜙
𝑦
𝑛𝑑𝑆 =

∑︁
(𝑥,𝑦) ∈𝑍

2∑︁
𝑖=1

Φ𝑖
𝑥𝑦𝑘Φ

𝑖
𝑥𝑦𝑛𝑊𝑥𝑦 (10)

𝐵0
𝑘 = (𝜙𝑖𝑘 , 𝑢

𝑖
Γ − 𝑢

𝑖
0)𝐿2 (Γ) =

∫
Γ1

𝜙𝑥𝑘
(
𝑢𝑥Γ − 𝑢

𝑥
0
)
+ 𝜙𝑦

𝑘

(
𝑢
𝑦

Γ
− 𝑢𝑦0

)
𝑑𝑆 =

∑︁
(𝑥,𝑦) ∈𝑍

2∑︁
𝑖=1

Φ𝑖
𝑥𝑦𝑘

(
𝑢𝑖Γ,𝑥𝑦 − 𝑢

𝑖
0,𝑥𝑦

)
𝑊𝑥𝑦 (11)

Formulae for M, [𝑄], L0, L𝑅𝑒, C0, and CRe as derived in [23] are provided in Appendix A. We also note that P ≡ 0 in

incompressible POD-ROMs due to the divergence-free characteristic of those POD modes, but that this property is not

guaranteed with the addition of the boundary penalty terms [12]. However, the pressure gradient in the lid-driven cavity

test problem is near-zero so we assume it to be zero for the rest of this analysis [17].

C. Lid-Driven Cavity Test Case

To verify the implementation of the BP-POD-ROM, we utilize the incompressible 2-D regularized lid-driven cavity.

This flow regime has been studied exhaustively, including investigation of how different Reynolds numbers and boundary

conditions influence flow solutions [24]. Lid-driven cavity problems are classified as regularized or unregularized

according to their boundary condition. All 2-D lid-driven cavities are rectangular domains with homogeneous Dirichlet

boundary conditions on three walls with a nonhomogeneous Dirichlet boundary condition parallel to the fourth wall. In

the unregularized case, the condition is constant along the nonhomogenous boundary, causing a discontinuity at the

corners. In the regularized case, it is a smooth nonnegative definite function that converges to zero at both boundary

edges in both the velocity and its gradient, eliminating the discontinuity [25]. Both cases have similar dynamics

and bifurcations but the unregularized lid-driven cavity experiences them at lower Reynolds numbers [17, 24]. We

nondimensionalize spatial units with respect to a length scale equal to half the width of the cavity and time units with

respect to a flow velocity equal to the maximum velocity of the boundary condition.

For snapshot data, we use regularized lid-driven cavity simulations computed via direct numerical simulations

(DNS) at 𝑅𝑒 = 17, 000 and 𝑅𝑒 = 25, 000 and at a discretization of 256 × 256 points [17, 26]. For the smaller Reynolds

number, the flow exhibits quasi-periodic dynamics; at the higher Reynolds number, the flow is fully aperiodic and

formally chaotic. We form a snapshot matrix using the first 150 time-steps with a statistically stationary time history

and reduce them to 100 POD modes, which contain over 99.99% of the snapshot matrix mean fluctuating kinetic energy

for both Reynolds numbers.

We define the parameterized boundary condition as

𝑢Γ (𝑥;𝛼) = | (1 − 𝑥) (1 + 𝑥) |2𝛼 (12)
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We note that 𝑢Γ (𝑥, 1) is equivalent to the regularized boundary, 𝑢Γ (𝑥, 0) is equivalent to the unregularized boundary.

Furthermore, 𝑢Γ (𝑥;𝛼) is well-defined for 𝑥 ∈ [0, 1] so the boundary condition is suitable for continuous perturbation of

𝛼 in Morris screening.

To test the sensitivity of POD-ROM solutions to the mean reduction snapshot 𝑢𝑖0, we employed an artificial snapshot

computed from a stream function created by summing weighted Gaussian functions

𝑓𝑖 (𝒙; 𝝃𝑖 , ℓ𝑖 , 𝜑𝑖) = 𝑣𝑖𝑒−(𝒙−𝝃 )𝑇Σ (𝒙−𝝃 ) , Σ = 20


ℓ𝑖 sin(𝜑𝑖) −ℓ𝑖 cos(𝜑𝑖)

cos(𝜑𝑖) sin(𝜑𝑖)

 (13)

where 𝜉𝑖 ∈ [−1, 1]2 is the location of the peak of the function, ℓ𝑖 > 0 is the relative length of the primary axis of the

function, and 𝜑𝑖 ∈ (0, 𝜋) is the orientation of the primary axis. Figure 1 shows the vorticity of the mean-reduction

at base parameter values with the center of each basis function labeled. Functions 𝑓1, 𝑓2, and 𝑓3 correspond to the

high vorticity eddies, Functions 𝑓4 and 𝑓5 correspond to the low-velocity region of the flow, and Functions 𝑓6 and 𝑓7

correspond the main rotational flow.

To verify the BP-POD-ROM, we examine the sensitivity of 1) global kinetic energy, 2) global vorticity, and 3)

local vorticities to a) Reynolds number, b) the boundary coefficient 𝛼 defined in Equation (12), c) the penalty strength

𝜅, and d) the mean-reduction defined by the location 𝜉, relative axis length ℓ, orientation 𝜑𝑖 , and maximum velocity

𝑣̄, of each basis function in the mean-reduction. Comparing studies on flow characteristics of regularized [23] and

unregularized [18] lid-driven cavities, we observe that unregularized lid-driven cavities experience vorticity closer the

boundary corner behind the driving lid, top-left corner with our orientation, likely due to the higher boundary velocity

in the area causing more flow into and then out of the corner. Therefore, we anticipate the flow behind the driving

lid to exhibit higher sensitivity to the boundary condition and penalty, 𝛼 and 𝜅, than other locations in the domain.

Additionally, we expect the method to be insensitive to mean-reduction perturbation in other areas of the domain that

exhibit fewer differences between regularized and unregularized boundary conditions.

All parameters in this study were sampled uniformly except for 𝛼 and 𝜅. Instead, log10 (𝛼) and log10 (𝜅) were

sampled uniformly since both parameters’ effects vary on an exponential scale [12]. To quantify a range of bifurcations,

we sample Reynolds number within [11, 000, 20, 000] for the 𝑅𝑒 =17,000 dataset and [19, 000, 28, 000] for the

𝑅𝑒 =25,000 dataset to check stability over large Reynolds number perturbations. Both of these ranges include both

quasi-periodic and aperiodic flow, but the lower range is primarily quasi-periodic and the higher range is primarily

aperiodic [17]. We sample log10 (𝜅) between [−12, 2] to include the effect of having no boundary penalty and we

sample log10 (𝛼) within [−2, 0] since at 𝛼 = 0.01 and our discretization, the boundary velocity at the points closest

to the corners is 0.99 making it nearly unregularized. We sample 𝑣̄𝑖 , and ℓ𝑖 for each function within ±25% of their

base values and sample 𝜑𝑖 within [0, 2𝜋] for each function. We sample the coordinates of the center of each basis 𝜉𝑖
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𝑓7  

𝑓5  

𝑓4  

𝑓3  

𝑓2  

𝑓1  

𝑓6  

Fig. 1 Vorticity of artificial mean-reduction using Gaussian basis functions. Functions 𝑓1, 𝑓2, and 𝑓3 correspond
to areas of high vorticity, 𝑓4 and 𝑓5 to low velocity regions, and 𝑓6 and 𝑓7 to the main rotational flow.

within 0.2 nondimensional spatial unites of their base values. The full list of parameters with assumed base values and

sampling ranges is provided in Appendix B. Note that the base values are not used in the computation of Morris indices.

To quantify the effect of parameter variations globally, we compute the kinetic energy 𝐾𝐸 and the integrated vorticity

𝑉 . We also measure the local effects of parameter variations using seven local vorticities,

𝑉𝑖 =

∫
𝐵𝑖

𝜔(𝑥)𝑑𝑥, 𝐵𝑖 = {𝑥 ∈ [−1, 1]2 | ∥𝑥 − 𝜉𝑖 ∥ ≤ 0.2}, 𝑖 = 1, ..., 7 (14)

where 𝜉𝑖 is the base location for the 𝑖𝑡ℎ mean-reduction function. The local vorticities allow differentiating parameter

effects at characteristic locations of the flow and whether the effects of local perturbations to the mean-reduction are

limited to that region. We compute sensitivities at 𝑡 = 150, the final snapshot in the data, and at 𝑡 = 300 to observe if

any changes in sensitivities occur when solving the BP-POD-ROM for snapshots not provided by data.

III. Results and Discussion
We illustrate in Figure 2 the Morris absolute mean sensitivities for locally integrated vorticities with respect to

Reynolds number, the boundary condition exponent, penalty strength, and mean-reduction parameters at 𝑅𝑒 =17,000

and 𝑅𝑒 =25,000. At both Reynolds numbers, the local vorticities, except for the high vorticity eddies 𝑉1, 𝑉2, and

𝑉3, are insensitive to all parameters. The vorticity in the bottom-left is significantly more sensitive to the boundary

condition and penalty strength than the vorticity in the top-left is, even though that is the region adjacent to the perturbed

boundary. Additionally, the sensitivity of the third vorticity region, corresponding to the bottom-right, is significantly

more sensitive at 𝑅𝑒 =25,000 than at 𝑅𝑒 =17,000. This may be due to the increased complexity of the shear layer and

counterrotating corner vortex at the higher Reynolds number.

To further demonstrate differences in locally integrated vorticities, we illustrate in Figure 3 the sensitivity of the
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𝑥-velocity at each cell to the boundary condition. As anticipated, both Reynolds number cases have high sensitivities

along the edge of the rotational flow, with highest sensitivity in the high-vorticity areas near the corners. However,

the sensitivity in the top corners is minimal, even though this is the region of greatest difference between regularized

and unregularized lid-driven cavity boundary conditions. Low-sensitivity in this region highlights a limitation of

POD-ROMs that they cannot quantify dynamics that are not included in the initial POD basis and these regions are

relatively stagnant in the unregularized POD basis. However, the boundary penalty still exhibits expected sensitivity in

high-vorticity corners and at the edge of the rotational flow while having minimal sensitivity in other regions despite

mean-reduction perturbation.

Figures 4 and 5 show the Morris screening absolute mean and standard deviation of sensitivity at 𝑡 = 150, normalized

to the maximum corresponding sensitivity index for each quantity. We restrict these plots to the sensitive parameters

identified in Figure 2 and divide by the maximum sensitivity for each quantity to identify which parameter is most

sensitive for each quantity. We observe that 𝑣̄1 is the most sensitive parameter for both 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000,

and that all quantities are insensitive to all other mean decomposition parameters. For 𝑅𝑒 =17,000, the Reynolds

number is the next most sensitive parameter and the penalty strength and boundary condition are relatively insensitive.

In contrast, for 𝑅𝑒 =25,000, all three parameters have similar sensitivities for all quantities. The mean-reduction

parameters, except 𝑣̄1, all have low standard deviations, indicating that sensitivity of these parameters is small for all

parameter combinations sampled. Additionally, 𝑣̄1 has the highest standard deviation of sensitivity for most quantities,

suggesting that kinetic energy and vorticity may be insensitive to 𝑣̄1 at some parameter combinations, even though 𝑣̄1 is

the most sensitive parameter. This is expected since 𝑣̄1 changes the structure of modes at the boundary, but the effect of

mode structure at the boundary is highly dependent on the 𝜅 and 𝛼. For both 𝑅𝑒 =17,000 and 𝑅𝑒 =25,000, 𝑣̄1 had the

largest 𝜇∗ for all quantities, but 𝜅 or 𝛼 have higher 𝜎 for the kinetic energy, and the locally integrated vorticities for the

high-vorticity regions. High 𝜎 for 𝜅 and 𝛼 are due to coupling between the effects of the boundary penalty used and the

strength with which the penalty is applied.

Figure 6 shows the Morris screening absolute mean sensitivity at 𝑡 = 300, normalized to the maximum corresponding

sensitivity index for each quantity. We note that for both Reynolds numbers, the relative sensitivity of the mean

decomposition increases significantly compared to 𝑡 = 150. However, all quantities remain more sensitive to 𝑅𝑒, 𝛼, 𝜅,

and 𝑣̄1 than the other mean decomposition parameters. For 𝑅𝑒 =17,000, we observe increases to the relative sensitivity

of all quantities to most mean-reduction parameters. However, all quantities remain less sensitivity to mean-reduction

parameters, with the exception of 𝑣1, than to 𝑅𝑒, 𝛼, and 𝜅. We observe similar increases to sensitivity for 𝑅𝑒 =25,000,

but with greater increases to sensitivity of local vorticities to mean-reduction parameters in the corners of the lid-driven

cavity. We also note that for both Reynolds numbers, the relative sensitivity of all quantities 𝑅𝑒 increases but 𝑣1 is still

the most sensitive parameter. These sensitivities at extrapolated times demonstrate that the ROM likely has increasing

instability since the sensitivity significantly increased for mean-reduction parameters that were not sensitive at 𝑡 = 150.
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Instability for POD-ROMs in extrapolatory regimes, especially when applied to Navier-Stokes equations, is a common

property [27, 28]. However, these results provide evidence that Morris screening sensitivity estimates are still reliable in

these unstable cases since which parameters are the most influential is consistent between the stable 𝑡 = 150 case and

unstable 𝑡 = 300 case.
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Fig. 2 Morris mean absolute sensitivity results for local integrated vorticities at 𝑡 = 150 and at (a) 𝑅𝑒 =17,000
and (b) 𝑅𝑒 =25,000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis).
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(a) 𝑅𝑒 =17,000 (b) 𝑅𝑒 =25,000

Fig. 3 Morris mean absolute sensitivity of 𝑢𝑥 to boundary condition at (a) 𝑅𝑒 =17,000 and (b) 𝑅𝑒 =25,000.

V EK V1 V2 V3 V4 V5 V6 V7

Re

log10(α)

log10(κ)

v̄1

µ∗ at t = 150

0.2

0.4

0.6

0.8

1.0

P
rop

ortion
of

M
ax

S
ensitivity

(a) 𝑅𝑒 =17,000

V EK V1 V2 V3 V4 V5 V6 V7

Re

log10(α)

log10(κ)

v̄1

µ∗ at t = 150

0.2

0.4

0.6

0.8

1.0

P
rop

ortion
of

M
ax

S
ensitivity

(b) 𝑅𝑒 =25,000

Fig. 4 Morris mean absolute sensitivity results for global and local quantities at (a) 𝑅𝑒 = 17, 000 and (b)
𝑅𝑒 = 25, 000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜇∗ for that quantity.
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Fig. 5 Morris standard deviation of sensitivity indices for global and local quantities at (a) 𝑅𝑒 =17,000 and
(b) 𝑅𝑒 =25,000. Each cell is 𝜎∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜎∗ for that quantity.
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Fig. 6 Morris mean absolute sensitivity results for global and local quantities at 𝑡 = 300 and (a) 𝑅𝑒 =17,000 and
(b) 𝑅𝑒 =25,000. Each cell is 𝜇∗ for the corresponding quantity (x-axis) and parameter (y-axis), divided by the
maximum 𝜇∗ for that quantity.
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IV. Conclusions
Quantification of CFD simulation variability with respect to boundary conditions and Reynolds number is an

important step to minimize risk and optimize performance for a wide variety of aerospace applications. Sensitivity

analysis quantifies for which parameters variability influences model outputs. Parameter sensitivities can then be used

in uncertainty quantification by identifying which parameters can be fixed without reducing model accuracy. However,

high-fidelity simulations are too computationally expensive for most sensitivity analysis whereas traditional proper

orthogonal decomposition-based Galerkin reduced-order models (POD-ROMs) do not permit variation of boundary

conditions. We address this by using POD-ROMs with boundary penalties (BP-POD-ROM) to allow perturbation of

boundary conditions, making sensitivity analysis feasible.

We tested the sensitivity of boundary conditions using a BP-POD-ROM on a lid-driven cavity test case at 𝑅𝑒 =17,000

and 𝑅𝑒 =25,000. As anticipated, a BP-POD-ROM constructed with regularized lid-driven cavity data exhibits high

sensitivity to the boundary condition behind the driving lid and in the lower corner vorticity regions when perturbing

towards a regularized boundary condition. This result is consistent with comparisons of flow characteristics for

regularized and unregularized lid-driven cavities, which have the greatest variation between boundary conditions and

Reynolds numbers in these regions [17, 18].

We determined that the kinetic energy and vorticity were most sensitive to the Reynolds number 𝑅𝑒 and the velocity

of the mean-reduction in the top-left 𝑣̄1. The BP-POD-ROM is likely highly sensitive to the mean-reduction in the

top-left since it influences the structure of POD modes at the boundary perturbations, thereby affecting the structure

of modes that are strengthened and weakened by the penalty. All quantities were insensitive to the mean-reduction

parameters at 𝑡 = 150, except for the velocity in the top-left, confirming that perturbations to the mean-reduction in

areas minimally affected by the boundary condition or Reynolds number do not produce vorticity. However, sensitivity

to mean-reduction parameters did increase with longer time integration, likely due to model error in the extrapolatory

regime. Finally, sensitivity of velocity showed that the expected high-vorticity areas were sensitive to the boundary

condition but the corners with boundary discontinuities were not.

The BP-POD-ROM provides a novel approach to sensitivity analysis of CFD data. By specifying boundary conditions

in a Galerkin POD-ROM, the approach allows sensitivity analysis of boundary parameters, such as surface roughness,

that are too computationally intensive to study with high-fidelity simulations. For future research, we plan to extended

the boundary penalty method to measure sensitivity of POD-ROM models with a larger physical parameter space

such as flows through axially symmetric tanks. Models with more physical parameters permits the analysis boundary

penalty sensitivity accuracy across greater basis variations, rather than the artificially perturbed basis and two Reynolds

samples used here. We will also test BP-POD-ROMs parameter inference accuracy to determine whether these models

can be used to accurately determine parameter values and predict uncertainty in observed quantities under boundary

perturbation. These results will be critical for determining optimal implementations on larger scale CFD models.
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Appendix

A. Navier-Stokes POD-ROM Matrices
Equation (15) provides the formulation of the POD-ROM matrices for the 2D incompressible Navier-Stokes with

POD modes {𝜙𝑥𝑚}𝑀𝑚=1, {𝜙
𝑦
𝑚}𝑀𝑚=1 and mean reductions 𝑢𝑥0 , 𝑢𝑦0 where 𝑀 is the number of POD modes. Formulations of

the POD-ROM matrices were developed in Ref. [23].

𝑀𝑘𝑛 = (𝜙𝑖𝑘 , 𝜙
𝑖
𝑛)𝐿2 (Ω) (15a)

=

∫
Ω

𝜙𝑥𝑘𝜙
𝑥
𝑛 + 𝜙

𝑦

𝑘
𝜙
𝑦
𝑛𝑑Ω

𝑄𝑘𝑛𝑚 = −(𝜙𝑖𝑘 , 𝜙
𝑗
𝑚∇ 𝑗𝜙
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(
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𝑦
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B. Parameter Values and Sampling Ranges
Table B.1 compiles the list of model parameters, base values, and sampling ranges for sensitivity analysis. Note that

base values are not used in computation of sensitivity indices and are either nominal values for the initial data or the

assumed parameters for the mean-reduction displayed in Figure 1.
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Table B.1 Base parameter values and sampling ranges for Morris screening.

Parameter Base Value Sampling Ranges

𝑅𝑒 (17, 000 Case) 17,000 [11,000, 20,000]
𝑅𝑒 (25, 000 Case) 25,000 [19,000, 28,000]

log10 (𝛼) 0 [−2, 0]
log10 (𝜅) −12 [−12, 0]

𝜉𝑥1 −0.75 [−0.9375, −0.5625]
𝜉𝑥2 −0.75 [−0.9375, −0.5625]
𝜉𝑥3 0.75 [0.5625, 0.9375]
𝜉𝑥4 −0.2 [−0.25, −0.15]
𝜉𝑥5 0.2 [0.15, −0.25]
𝜉𝑥6 0.5 [0.375, 0.625]
𝜉𝑥7 0.75 [0.5625, 0.9375]

𝜉𝑦1 0.75 [0.5625, 0.9375, ]
𝜉𝑦2 −0.75 [−0.9375, −0.5625]
𝜉𝑦2 −0.75 [−0.9375, −0.5625]
𝜉𝑦4 −0.2 [−0.25, −0.15]
𝜉𝑦5 0.2 [0.15, 0.25]
𝜉𝑦6 0.5 [0.375, 0.625]
𝜉𝑦7 0.75 [0.5625, 0.9375]

Parameter Base Value Sampling Ranges

𝑣̄1 .95 [0.7125, 1.1875]
𝑣̄2 .5 [0.375, 0.625]
𝑣̄3 .5 [0.7125, 1.1875]
𝑣̄4 .1 [0.075, 0.125]
𝑣̄5 .1 [0.075, 0.125]
𝑣̄6 .1 [0.075, 0.125]
𝑣̄7 .1 [0.075, 0.125]
𝜃1 0 [0, 2𝜋]
𝜃2

3𝜋
4 [0, 2𝜋]

𝜃3
𝜋
4 [0, 2𝜋]

𝜃4 0 [0, 2𝜋]
𝜃5 0 [0, 2𝜋]
𝜃6 0 [0, 2𝜋]
𝜃7 0 [0, 2𝜋]

𝑙1 1 [.75, 1.25]
𝑙2 1.5 [1.125, 1.875]
𝑙3 1.5 [1.125, 1.875]
𝑙4 1 [.75, 1.25]
𝑙5 1 [.75, 1.25]
𝑙6 1 [.75, 1.25]
𝑙7 1 [.75, 1.25]
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